Properties

Label 540.1.p.b
Level $540$
Weight $1$
Character orbit 540.p
Analytic conductor $0.269$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [540,1,Mod(19,540)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(540, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("540.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 540.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.269495106822\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1620.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + \zeta_{6}^{2} q^{4} - \zeta_{6}^{2} q^{5} + \zeta_{6} q^{7} - q^{8} + q^{10} + \zeta_{6}^{2} q^{14} - \zeta_{6} q^{16} + \zeta_{6} q^{20} + \zeta_{6}^{2} q^{23} - \zeta_{6} q^{25} + \cdots - \zeta_{6}^{2} q^{94} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + q^{5} + q^{7} - 2 q^{8} + 2 q^{10} - q^{14} - q^{16} + q^{20} - q^{23} - q^{25} - 2 q^{28} - q^{29} + q^{32} + 2 q^{35} - q^{40} - q^{41} - 2 q^{43} - 2 q^{46} - q^{47}+ \cdots + q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{6}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 0.500000 0.866025i −1.00000 0 1.00000
199.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 0.500000 + 0.866025i −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
9.c even 3 1 inner
180.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 540.1.p.b 2
3.b odd 2 1 180.1.p.a 2
4.b odd 2 1 540.1.p.a 2
5.b even 2 1 540.1.p.a 2
5.c odd 4 2 2700.1.t.a 4
9.c even 3 1 inner 540.1.p.b 2
9.c even 3 1 1620.1.f.a 1
9.d odd 6 1 180.1.p.a 2
9.d odd 6 1 1620.1.f.d 1
12.b even 2 1 180.1.p.b yes 2
15.d odd 2 1 180.1.p.b yes 2
15.e even 4 2 900.1.t.a 4
20.d odd 2 1 CM 540.1.p.b 2
20.e even 4 2 2700.1.t.a 4
24.f even 2 1 2880.1.bu.a 2
24.h odd 2 1 2880.1.bu.b 2
36.f odd 6 1 540.1.p.a 2
36.f odd 6 1 1620.1.f.c 1
36.h even 6 1 180.1.p.b yes 2
36.h even 6 1 1620.1.f.b 1
45.h odd 6 1 180.1.p.b yes 2
45.h odd 6 1 1620.1.f.b 1
45.j even 6 1 540.1.p.a 2
45.j even 6 1 1620.1.f.c 1
45.k odd 12 2 2700.1.t.a 4
45.l even 12 2 900.1.t.a 4
60.h even 2 1 180.1.p.a 2
60.l odd 4 2 900.1.t.a 4
72.j odd 6 1 2880.1.bu.b 2
72.l even 6 1 2880.1.bu.a 2
120.i odd 2 1 2880.1.bu.a 2
120.m even 2 1 2880.1.bu.b 2
180.n even 6 1 180.1.p.a 2
180.n even 6 1 1620.1.f.d 1
180.p odd 6 1 inner 540.1.p.b 2
180.p odd 6 1 1620.1.f.a 1
180.v odd 12 2 900.1.t.a 4
180.x even 12 2 2700.1.t.a 4
360.bd even 6 1 2880.1.bu.b 2
360.bh odd 6 1 2880.1.bu.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.1.p.a 2 3.b odd 2 1
180.1.p.a 2 9.d odd 6 1
180.1.p.a 2 60.h even 2 1
180.1.p.a 2 180.n even 6 1
180.1.p.b yes 2 12.b even 2 1
180.1.p.b yes 2 15.d odd 2 1
180.1.p.b yes 2 36.h even 6 1
180.1.p.b yes 2 45.h odd 6 1
540.1.p.a 2 4.b odd 2 1
540.1.p.a 2 5.b even 2 1
540.1.p.a 2 36.f odd 6 1
540.1.p.a 2 45.j even 6 1
540.1.p.b 2 1.a even 1 1 trivial
540.1.p.b 2 9.c even 3 1 inner
540.1.p.b 2 20.d odd 2 1 CM
540.1.p.b 2 180.p odd 6 1 inner
900.1.t.a 4 15.e even 4 2
900.1.t.a 4 45.l even 12 2
900.1.t.a 4 60.l odd 4 2
900.1.t.a 4 180.v odd 12 2
1620.1.f.a 1 9.c even 3 1
1620.1.f.a 1 180.p odd 6 1
1620.1.f.b 1 36.h even 6 1
1620.1.f.b 1 45.h odd 6 1
1620.1.f.c 1 36.f odd 6 1
1620.1.f.c 1 45.j even 6 1
1620.1.f.d 1 9.d odd 6 1
1620.1.f.d 1 180.n even 6 1
2700.1.t.a 4 5.c odd 4 2
2700.1.t.a 4 20.e even 4 2
2700.1.t.a 4 45.k odd 12 2
2700.1.t.a 4 180.x even 12 2
2880.1.bu.a 2 24.f even 2 1
2880.1.bu.a 2 72.l even 6 1
2880.1.bu.a 2 120.i odd 2 1
2880.1.bu.a 2 360.bh odd 6 1
2880.1.bu.b 2 24.h odd 2 1
2880.1.bu.b 2 72.j odd 6 1
2880.1.bu.b 2 120.m even 2 1
2880.1.bu.b 2 360.bd even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(540, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less