Properties

Label 1620.1.f.c
Level $1620$
Weight $1$
Character orbit 1620.f
Self dual yes
Analytic conductor $0.808$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -20
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,1,Mod(1459,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.1459");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1620.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.808485320465\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1620.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.31492800.1
Stark unit: Root of $x^{6} - 79926x^{5} + 24440847x^{4} - 6339443636x^{3} + 24440847x^{2} - 79926x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} + q^{14} + q^{16} - q^{20} - q^{23} + q^{25} + q^{28} + q^{29} + q^{32} - q^{35} - q^{40} + q^{41} - 2 q^{43} - q^{46} - q^{47} + q^{50}+ \cdots - q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1459.1
0
1.00000 0 1.00000 −1.00000 0 1.00000 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1620.1.f.c 1
3.b odd 2 1 1620.1.f.b 1
4.b odd 2 1 1620.1.f.a 1
5.b even 2 1 1620.1.f.a 1
9.c even 3 2 540.1.p.a 2
9.d odd 6 2 180.1.p.b yes 2
12.b even 2 1 1620.1.f.d 1
15.d odd 2 1 1620.1.f.d 1
20.d odd 2 1 CM 1620.1.f.c 1
36.f odd 6 2 540.1.p.b 2
36.h even 6 2 180.1.p.a 2
45.h odd 6 2 180.1.p.a 2
45.j even 6 2 540.1.p.b 2
45.k odd 12 4 2700.1.t.a 4
45.l even 12 4 900.1.t.a 4
60.h even 2 1 1620.1.f.b 1
72.j odd 6 2 2880.1.bu.a 2
72.l even 6 2 2880.1.bu.b 2
180.n even 6 2 180.1.p.b yes 2
180.p odd 6 2 540.1.p.a 2
180.v odd 12 4 900.1.t.a 4
180.x even 12 4 2700.1.t.a 4
360.bd even 6 2 2880.1.bu.a 2
360.bh odd 6 2 2880.1.bu.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.1.p.a 2 36.h even 6 2
180.1.p.a 2 45.h odd 6 2
180.1.p.b yes 2 9.d odd 6 2
180.1.p.b yes 2 180.n even 6 2
540.1.p.a 2 9.c even 3 2
540.1.p.a 2 180.p odd 6 2
540.1.p.b 2 36.f odd 6 2
540.1.p.b 2 45.j even 6 2
900.1.t.a 4 45.l even 12 4
900.1.t.a 4 180.v odd 12 4
1620.1.f.a 1 4.b odd 2 1
1620.1.f.a 1 5.b even 2 1
1620.1.f.b 1 3.b odd 2 1
1620.1.f.b 1 60.h even 2 1
1620.1.f.c 1 1.a even 1 1 trivial
1620.1.f.c 1 20.d odd 2 1 CM
1620.1.f.d 1 12.b even 2 1
1620.1.f.d 1 15.d odd 2 1
2700.1.t.a 4 45.k odd 12 4
2700.1.t.a 4 180.x even 12 4
2880.1.bu.a 2 72.j odd 6 2
2880.1.bu.a 2 360.bd even 6 2
2880.1.bu.b 2 72.l even 6 2
2880.1.bu.b 2 360.bh odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1620, [\chi])\):

\( T_{7} - 1 \) Copy content Toggle raw display
\( T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 1 \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 1 \) Copy content Toggle raw display
$89$ \( T - 1 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less