Properties

Label 900.1.t.a
Level 900900
Weight 11
Character orbit 900.t
Analytic conductor 0.4490.449
Analytic rank 00
Dimension 44
Projective image D3D_{3}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,1,Mod(151,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.151");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 900=223252 900 = 2^{2} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 900.t (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4491585113700.449158511370
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 180)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.1620.1
Artin image: S3×C12S_3\times C_{12}
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ125q2ζ12q3ζ124q4+q6ζ125q7+ζ123q8+ζ122q9+ζ125q12+ζ124q14ζ122q16+ζ122q96+O(q100) q + \zeta_{12}^{5} q^{2} - \zeta_{12} q^{3} - \zeta_{12}^{4} q^{4} + q^{6} - \zeta_{12}^{5} q^{7} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} + \zeta_{12}^{5} q^{12} + \zeta_{12}^{4} q^{14} - \zeta_{12}^{2} q^{16} + \cdots - \zeta_{12}^{2} q^{96} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+4q6+2q92q142q164q21+2q242q29+4q36+2q414q46+2q54+2q56+2q614q642q692q812q844q86+2q96+O(q100) 4 q + 2 q^{4} + 4 q^{6} + 2 q^{9} - 2 q^{14} - 2 q^{16} - 4 q^{21} + 2 q^{24} - 2 q^{29} + 4 q^{36} + 2 q^{41} - 4 q^{46} + 2 q^{54} + 2 q^{56} + 2 q^{61} - 4 q^{64} - 2 q^{69} - 2 q^{81} - 2 q^{84} - 4 q^{86}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/900Z)×\left(\mathbb{Z}/900\mathbb{Z}\right)^\times.

nn 101101 451451 577577
χ(n)\chi(n) ζ124\zeta_{12}^{4} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
151.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 0.500000i −0.866025 + 0.500000i 0.500000 + 0.866025i 0 1.00000 0.866025 + 0.500000i 1.00000i 0.500000 0.866025i 0
151.2 0.866025 + 0.500000i 0.866025 0.500000i 0.500000 + 0.866025i 0 1.00000 −0.866025 0.500000i 1.00000i 0.500000 0.866025i 0
751.1 −0.866025 + 0.500000i −0.866025 0.500000i 0.500000 0.866025i 0 1.00000 0.866025 0.500000i 1.00000i 0.500000 + 0.866025i 0
751.2 0.866025 0.500000i 0.866025 + 0.500000i 0.500000 0.866025i 0 1.00000 −0.866025 + 0.500000i 1.00000i 0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
4.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
36.f odd 6 1 inner
45.j even 6 1 inner
180.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.1.t.a 4
3.b odd 2 1 2700.1.t.a 4
4.b odd 2 1 inner 900.1.t.a 4
5.b even 2 1 inner 900.1.t.a 4
5.c odd 4 1 180.1.p.a 2
5.c odd 4 1 180.1.p.b yes 2
9.c even 3 1 inner 900.1.t.a 4
9.d odd 6 1 2700.1.t.a 4
12.b even 2 1 2700.1.t.a 4
15.d odd 2 1 2700.1.t.a 4
15.e even 4 1 540.1.p.a 2
15.e even 4 1 540.1.p.b 2
20.d odd 2 1 CM 900.1.t.a 4
20.e even 4 1 180.1.p.a 2
20.e even 4 1 180.1.p.b yes 2
36.f odd 6 1 inner 900.1.t.a 4
36.h even 6 1 2700.1.t.a 4
40.i odd 4 1 2880.1.bu.a 2
40.i odd 4 1 2880.1.bu.b 2
40.k even 4 1 2880.1.bu.a 2
40.k even 4 1 2880.1.bu.b 2
45.h odd 6 1 2700.1.t.a 4
45.j even 6 1 inner 900.1.t.a 4
45.k odd 12 1 180.1.p.a 2
45.k odd 12 1 180.1.p.b yes 2
45.k odd 12 1 1620.1.f.b 1
45.k odd 12 1 1620.1.f.d 1
45.l even 12 1 540.1.p.a 2
45.l even 12 1 540.1.p.b 2
45.l even 12 1 1620.1.f.a 1
45.l even 12 1 1620.1.f.c 1
60.h even 2 1 2700.1.t.a 4
60.l odd 4 1 540.1.p.a 2
60.l odd 4 1 540.1.p.b 2
180.n even 6 1 2700.1.t.a 4
180.p odd 6 1 inner 900.1.t.a 4
180.v odd 12 1 540.1.p.a 2
180.v odd 12 1 540.1.p.b 2
180.v odd 12 1 1620.1.f.a 1
180.v odd 12 1 1620.1.f.c 1
180.x even 12 1 180.1.p.a 2
180.x even 12 1 180.1.p.b yes 2
180.x even 12 1 1620.1.f.b 1
180.x even 12 1 1620.1.f.d 1
360.bo even 12 1 2880.1.bu.a 2
360.bo even 12 1 2880.1.bu.b 2
360.bu odd 12 1 2880.1.bu.a 2
360.bu odd 12 1 2880.1.bu.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.1.p.a 2 5.c odd 4 1
180.1.p.a 2 20.e even 4 1
180.1.p.a 2 45.k odd 12 1
180.1.p.a 2 180.x even 12 1
180.1.p.b yes 2 5.c odd 4 1
180.1.p.b yes 2 20.e even 4 1
180.1.p.b yes 2 45.k odd 12 1
180.1.p.b yes 2 180.x even 12 1
540.1.p.a 2 15.e even 4 1
540.1.p.a 2 45.l even 12 1
540.1.p.a 2 60.l odd 4 1
540.1.p.a 2 180.v odd 12 1
540.1.p.b 2 15.e even 4 1
540.1.p.b 2 45.l even 12 1
540.1.p.b 2 60.l odd 4 1
540.1.p.b 2 180.v odd 12 1
900.1.t.a 4 1.a even 1 1 trivial
900.1.t.a 4 4.b odd 2 1 inner
900.1.t.a 4 5.b even 2 1 inner
900.1.t.a 4 9.c even 3 1 inner
900.1.t.a 4 20.d odd 2 1 CM
900.1.t.a 4 36.f odd 6 1 inner
900.1.t.a 4 45.j even 6 1 inner
900.1.t.a 4 180.p odd 6 1 inner
1620.1.f.a 1 45.l even 12 1
1620.1.f.a 1 180.v odd 12 1
1620.1.f.b 1 45.k odd 12 1
1620.1.f.b 1 180.x even 12 1
1620.1.f.c 1 45.l even 12 1
1620.1.f.c 1 180.v odd 12 1
1620.1.f.d 1 45.k odd 12 1
1620.1.f.d 1 180.x even 12 1
2700.1.t.a 4 3.b odd 2 1
2700.1.t.a 4 9.d odd 6 1
2700.1.t.a 4 12.b even 2 1
2700.1.t.a 4 15.d odd 2 1
2700.1.t.a 4 36.h even 6 1
2700.1.t.a 4 45.h odd 6 1
2700.1.t.a 4 60.h even 2 1
2700.1.t.a 4 180.n even 6 1
2880.1.bu.a 2 40.i odd 4 1
2880.1.bu.a 2 40.k even 4 1
2880.1.bu.a 2 360.bo even 12 1
2880.1.bu.a 2 360.bu odd 12 1
2880.1.bu.b 2 40.i odd 4 1
2880.1.bu.b 2 40.k even 4 1
2880.1.bu.b 2 360.bo even 12 1
2880.1.bu.b 2 360.bu odd 12 1

Hecke kernels

This newform subspace is the entire newspace S1new(900,[χ])S_{1}^{\mathrm{new}}(900, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
2929 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
4343 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
4747 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
6767 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
8989 (T1)4 (T - 1)^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less