Properties

Label 900.1.t.a
Level $900$
Weight $1$
Character orbit 900.t
Analytic conductor $0.449$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,1,Mod(151,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.151");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 900.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.449158511370\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1620.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{2} - \zeta_{12} q^{3} - \zeta_{12}^{4} q^{4} + q^{6} - \zeta_{12}^{5} q^{7} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{12}^{5} q^{2} - \zeta_{12} q^{3} - \zeta_{12}^{4} q^{4} + q^{6} - \zeta_{12}^{5} q^{7} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} + \zeta_{12}^{5} q^{12} + \zeta_{12}^{4} q^{14} - \zeta_{12}^{2} q^{16} - \zeta_{12} q^{18} - q^{21} + \zeta_{12} q^{23} - \zeta_{12}^{4} q^{24} - \zeta_{12}^{3} q^{27} - \zeta_{12}^{3} q^{28} - \zeta_{12}^{2} q^{29} + \zeta_{12} q^{32} + q^{36} - \zeta_{12}^{4} q^{41} - \zeta_{12}^{5} q^{42} - 2 \zeta_{12}^{5} q^{43} - q^{46} - \zeta_{12}^{5} q^{47} + \zeta_{12}^{3} q^{48} + \zeta_{12}^{2} q^{54} + \zeta_{12}^{2} q^{56} + \zeta_{12} q^{58} + \zeta_{12}^{2} q^{61} + \zeta_{12} q^{63} - q^{64} - \zeta_{12} q^{67} - \zeta_{12}^{2} q^{69} + \zeta_{12}^{5} q^{72} + \zeta_{12}^{4} q^{81} + \zeta_{12}^{3} q^{82} + \zeta_{12}^{5} q^{83} + \zeta_{12}^{4} q^{84} + 2 \zeta_{12}^{4} q^{86} + \zeta_{12}^{3} q^{87} + q^{89} - \zeta_{12}^{5} q^{92} + \zeta_{12}^{4} q^{94} - \zeta_{12}^{2} q^{96} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{6} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 4 q^{6} + 2 q^{9} - 2 q^{14} - 2 q^{16} - 4 q^{21} + 2 q^{24} - 2 q^{29} + 4 q^{36} + 2 q^{41} - 4 q^{46} + 2 q^{54} + 2 q^{56} + 2 q^{61} - 4 q^{64} - 2 q^{69} - 2 q^{81} - 2 q^{84} - 4 q^{86} + 4 q^{89} - 2 q^{94} - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(\zeta_{12}^{4}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
151.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 0.500000i −0.866025 + 0.500000i 0.500000 + 0.866025i 0 1.00000 0.866025 + 0.500000i 1.00000i 0.500000 0.866025i 0
151.2 0.866025 + 0.500000i 0.866025 0.500000i 0.500000 + 0.866025i 0 1.00000 −0.866025 0.500000i 1.00000i 0.500000 0.866025i 0
751.1 −0.866025 + 0.500000i −0.866025 0.500000i 0.500000 0.866025i 0 1.00000 0.866025 0.500000i 1.00000i 0.500000 + 0.866025i 0
751.2 0.866025 0.500000i 0.866025 + 0.500000i 0.500000 0.866025i 0 1.00000 −0.866025 + 0.500000i 1.00000i 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
36.f odd 6 1 inner
45.j even 6 1 inner
180.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.1.t.a 4
3.b odd 2 1 2700.1.t.a 4
4.b odd 2 1 inner 900.1.t.a 4
5.b even 2 1 inner 900.1.t.a 4
5.c odd 4 1 180.1.p.a 2
5.c odd 4 1 180.1.p.b yes 2
9.c even 3 1 inner 900.1.t.a 4
9.d odd 6 1 2700.1.t.a 4
12.b even 2 1 2700.1.t.a 4
15.d odd 2 1 2700.1.t.a 4
15.e even 4 1 540.1.p.a 2
15.e even 4 1 540.1.p.b 2
20.d odd 2 1 CM 900.1.t.a 4
20.e even 4 1 180.1.p.a 2
20.e even 4 1 180.1.p.b yes 2
36.f odd 6 1 inner 900.1.t.a 4
36.h even 6 1 2700.1.t.a 4
40.i odd 4 1 2880.1.bu.a 2
40.i odd 4 1 2880.1.bu.b 2
40.k even 4 1 2880.1.bu.a 2
40.k even 4 1 2880.1.bu.b 2
45.h odd 6 1 2700.1.t.a 4
45.j even 6 1 inner 900.1.t.a 4
45.k odd 12 1 180.1.p.a 2
45.k odd 12 1 180.1.p.b yes 2
45.k odd 12 1 1620.1.f.b 1
45.k odd 12 1 1620.1.f.d 1
45.l even 12 1 540.1.p.a 2
45.l even 12 1 540.1.p.b 2
45.l even 12 1 1620.1.f.a 1
45.l even 12 1 1620.1.f.c 1
60.h even 2 1 2700.1.t.a 4
60.l odd 4 1 540.1.p.a 2
60.l odd 4 1 540.1.p.b 2
180.n even 6 1 2700.1.t.a 4
180.p odd 6 1 inner 900.1.t.a 4
180.v odd 12 1 540.1.p.a 2
180.v odd 12 1 540.1.p.b 2
180.v odd 12 1 1620.1.f.a 1
180.v odd 12 1 1620.1.f.c 1
180.x even 12 1 180.1.p.a 2
180.x even 12 1 180.1.p.b yes 2
180.x even 12 1 1620.1.f.b 1
180.x even 12 1 1620.1.f.d 1
360.bo even 12 1 2880.1.bu.a 2
360.bo even 12 1 2880.1.bu.b 2
360.bu odd 12 1 2880.1.bu.a 2
360.bu odd 12 1 2880.1.bu.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.1.p.a 2 5.c odd 4 1
180.1.p.a 2 20.e even 4 1
180.1.p.a 2 45.k odd 12 1
180.1.p.a 2 180.x even 12 1
180.1.p.b yes 2 5.c odd 4 1
180.1.p.b yes 2 20.e even 4 1
180.1.p.b yes 2 45.k odd 12 1
180.1.p.b yes 2 180.x even 12 1
540.1.p.a 2 15.e even 4 1
540.1.p.a 2 45.l even 12 1
540.1.p.a 2 60.l odd 4 1
540.1.p.a 2 180.v odd 12 1
540.1.p.b 2 15.e even 4 1
540.1.p.b 2 45.l even 12 1
540.1.p.b 2 60.l odd 4 1
540.1.p.b 2 180.v odd 12 1
900.1.t.a 4 1.a even 1 1 trivial
900.1.t.a 4 4.b odd 2 1 inner
900.1.t.a 4 5.b even 2 1 inner
900.1.t.a 4 9.c even 3 1 inner
900.1.t.a 4 20.d odd 2 1 CM
900.1.t.a 4 36.f odd 6 1 inner
900.1.t.a 4 45.j even 6 1 inner
900.1.t.a 4 180.p odd 6 1 inner
1620.1.f.a 1 45.l even 12 1
1620.1.f.a 1 180.v odd 12 1
1620.1.f.b 1 45.k odd 12 1
1620.1.f.b 1 180.x even 12 1
1620.1.f.c 1 45.l even 12 1
1620.1.f.c 1 180.v odd 12 1
1620.1.f.d 1 45.k odd 12 1
1620.1.f.d 1 180.x even 12 1
2700.1.t.a 4 3.b odd 2 1
2700.1.t.a 4 9.d odd 6 1
2700.1.t.a 4 12.b even 2 1
2700.1.t.a 4 15.d odd 2 1
2700.1.t.a 4 36.h even 6 1
2700.1.t.a 4 45.h odd 6 1
2700.1.t.a 4 60.h even 2 1
2700.1.t.a 4 180.n even 6 1
2880.1.bu.a 2 40.i odd 4 1
2880.1.bu.a 2 40.k even 4 1
2880.1.bu.a 2 360.bo even 12 1
2880.1.bu.a 2 360.bu odd 12 1
2880.1.bu.b 2 40.i odd 4 1
2880.1.bu.b 2 40.k even 4 1
2880.1.bu.b 2 360.bo even 12 1
2880.1.bu.b 2 360.bu odd 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(900, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$89$ \( (T - 1)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less