L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + 0.999·6-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (0.866 − 0.499i)18-s − 0.999·21-s + (−0.866 + 0.5i)23-s + (0.499 + 0.866i)24-s − 0.999i·27-s − 0.999i·28-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + 0.999·6-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (0.866 − 0.499i)18-s − 0.999·21-s + (−0.866 + 0.5i)23-s + (0.499 + 0.866i)24-s − 0.999i·27-s − 0.999i·28-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.939−0.342i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.939−0.342i)
|
Particular Values
L(21) |
≈ |
1.911711831 |
L(21) |
≈ |
1.911711831 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(−0.866+0.5i)T |
| 5 | 1 |
good | 7 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(−0.5+0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1−T2 |
| 23 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 47 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 89 | 1−T+T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24500534921441458018756521182, −9.406643272632738448593183961729, −8.420129043678471038269485448510, −7.68648435497163247384265529112, −6.85346132123599879990300358046, −6.30309663225975107875380222692, −5.07538116913808543559181474363, −3.78266634191057359383353503183, −3.29523718287608912861619510852, −1.99320744234721752153630222029,
2.02958261785064266889205810693, 2.96282099632115777682341682216, 3.80229274777523275152376534826, 4.71981590459968416260113368717, 5.79215999053065059993379423144, 6.63735453477614437838846371570, 7.76459623773891057538114256540, 8.807323760400979211374242548428, 9.714010054932680819325937152914, 10.08910766686788402894711233567