L(s) = 1 | + (2.5 − 4.33i)5-s + (6.86 + 11.8i)7-s + (10.8 + 18.7i)11-s + (39.8 − 68.9i)13-s + 64.3·17-s − 144.·19-s + (−13.4 + 23.3i)23-s + (−12.5 − 21.6i)25-s + (148. + 257. i)29-s + (48.3 − 83.7i)31-s + 68.6·35-s + 401.·37-s + (−5.84 + 10.1i)41-s + (−146. − 253. i)43-s + (87.6 + 151. i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (0.370 + 0.642i)7-s + (0.296 + 0.513i)11-s + (0.849 − 1.47i)13-s + 0.918·17-s − 1.74·19-s + (−0.122 + 0.211i)23-s + (−0.100 − 0.173i)25-s + (0.950 + 1.64i)29-s + (0.279 − 0.484i)31-s + 0.331·35-s + 1.78·37-s + (−0.0222 + 0.0385i)41-s + (−0.518 − 0.897i)43-s + (0.272 + 0.471i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.158i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.987 + 0.158i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.275574503\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.275574503\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
good | 7 | \( 1 + (-6.86 - 11.8i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-10.8 - 18.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-39.8 + 68.9i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 64.3T + 4.91e3T^{2} \) |
| 19 | \( 1 + 144.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (13.4 - 23.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-148. - 257. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-48.3 + 83.7i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 401.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (5.84 - 10.1i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (146. + 253. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-87.6 - 151. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 155.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-297. + 515. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-31.0 - 53.7i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-80.3 + 139. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 959.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 763.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (31.9 + 55.3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-458. - 794. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.31e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-64.0 - 110. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41866131137243138576587409667, −9.494959396113792967398453663823, −8.451706970583458333172718525466, −8.022646290443197224805206042112, −6.59894721812784087558263310331, −5.70866101194824584782449968282, −4.85576131193121705256522512982, −3.58455335321932603975814701041, −2.25714426330342337022822076856, −0.931570742329795017826123926136,
1.00386672174661341341778171461, 2.32139843044102630314694774741, 3.82154501596779099185266056794, 4.53545077878795651697362341139, 6.15865346400346590677170431341, 6.54649309997530027686153775328, 7.83466901722604972357316159644, 8.594065509861454816022828442016, 9.616831100780768996117860692518, 10.51284056821798240568049431823