Properties

Label 540.4.i.c.361.5
Level $540$
Weight $4$
Character 540.361
Analytic conductor $31.861$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [540,4,Mod(181,540)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(540, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("540.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 540.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.8610314031\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} + 180 x^{12} - 989 x^{11} + 11627 x^{10} - 49236 x^{9} + 328637 x^{8} - 1029725 x^{7} + \cdots + 1484973 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{17} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.5
Root \(0.500000 + 7.22388i\) of defining polynomial
Character \(\chi\) \(=\) 540.361
Dual form 540.4.i.c.181.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 4.33013i) q^{5} +(6.86720 + 11.8943i) q^{7} +(10.8215 + 18.7434i) q^{11} +(39.8133 - 68.9586i) q^{13} +64.3628 q^{17} -144.503 q^{19} +(-13.4725 + 23.3351i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(148.503 + 257.215i) q^{29} +(48.3254 - 83.7020i) q^{31} +68.6720 q^{35} +401.580 q^{37} +(-5.84448 + 10.1229i) q^{41} +(-146.136 - 253.114i) q^{43} +(87.6812 + 151.868i) q^{47} +(77.1832 - 133.685i) q^{49} -155.406 q^{53} +108.215 q^{55} +(297.582 - 515.427i) q^{59} +(31.0535 + 53.7862i) q^{61} +(-199.066 - 344.793i) q^{65} +(80.3318 - 139.139i) q^{67} +959.723 q^{71} +763.424 q^{73} +(-148.627 + 257.429i) q^{77} +(-31.9825 - 55.3952i) q^{79} +(458.663 + 794.427i) q^{83} +(160.907 - 278.699i) q^{85} +1318.88 q^{89} +1093.62 q^{91} +(-361.256 + 625.714i) q^{95} +(64.0845 + 110.998i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 35 q^{5} - 8 q^{7} + 27 q^{11} - 32 q^{13} - 246 q^{17} - 134 q^{19} + 42 q^{23} - 175 q^{25} + 324 q^{29} - 98 q^{31} - 80 q^{35} + 712 q^{37} + 339 q^{41} - 119 q^{43} - 96 q^{47} - 813 q^{49}+ \cdots - 1991 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) 6.86720 + 11.8943i 0.370794 + 0.642234i 0.989688 0.143241i \(-0.0457523\pi\)
−0.618894 + 0.785475i \(0.712419\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.8215 + 18.7434i 0.296619 + 0.513759i 0.975360 0.220619i \(-0.0708076\pi\)
−0.678741 + 0.734377i \(0.737474\pi\)
\(12\) 0 0
\(13\) 39.8133 68.9586i 0.849401 1.47121i −0.0323418 0.999477i \(-0.510297\pi\)
0.881743 0.471730i \(-0.156370\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 64.3628 0.918251 0.459125 0.888371i \(-0.348163\pi\)
0.459125 + 0.888371i \(0.348163\pi\)
\(18\) 0 0
\(19\) −144.503 −1.74480 −0.872399 0.488795i \(-0.837437\pi\)
−0.872399 + 0.488795i \(0.837437\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −13.4725 + 23.3351i −0.122140 + 0.211552i −0.920611 0.390480i \(-0.872309\pi\)
0.798471 + 0.602033i \(0.205642\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 148.503 + 257.215i 0.950908 + 1.64702i 0.743465 + 0.668775i \(0.233181\pi\)
0.207443 + 0.978247i \(0.433486\pi\)
\(30\) 0 0
\(31\) 48.3254 83.7020i 0.279984 0.484946i −0.691397 0.722475i \(-0.743004\pi\)
0.971380 + 0.237529i \(0.0763376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 68.6720 0.331648
\(36\) 0 0
\(37\) 401.580 1.78431 0.892153 0.451734i \(-0.149194\pi\)
0.892153 + 0.451734i \(0.149194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.84448 + 10.1229i −0.0222623 + 0.0385595i −0.876942 0.480596i \(-0.840420\pi\)
0.854680 + 0.519156i \(0.173754\pi\)
\(42\) 0 0
\(43\) −146.136 253.114i −0.518267 0.897665i −0.999775 0.0212231i \(-0.993244\pi\)
0.481508 0.876442i \(-0.340089\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 87.6812 + 151.868i 0.272119 + 0.471325i 0.969404 0.245469i \(-0.0789421\pi\)
−0.697285 + 0.716794i \(0.745609\pi\)
\(48\) 0 0
\(49\) 77.1832 133.685i 0.225024 0.389753i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −155.406 −0.402767 −0.201383 0.979513i \(-0.564544\pi\)
−0.201383 + 0.979513i \(0.564544\pi\)
\(54\) 0 0
\(55\) 108.215 0.265304
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 297.582 515.427i 0.656641 1.13734i −0.324838 0.945770i \(-0.605310\pi\)
0.981480 0.191567i \(-0.0613568\pi\)
\(60\) 0 0
\(61\) 31.0535 + 53.7862i 0.0651802 + 0.112895i 0.896774 0.442489i \(-0.145904\pi\)
−0.831594 + 0.555384i \(0.812571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −199.066 344.793i −0.379864 0.657944i
\(66\) 0 0
\(67\) 80.3318 139.139i 0.146479 0.253709i −0.783445 0.621461i \(-0.786539\pi\)
0.929924 + 0.367752i \(0.119873\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 959.723 1.60420 0.802100 0.597190i \(-0.203716\pi\)
0.802100 + 0.597190i \(0.203716\pi\)
\(72\) 0 0
\(73\) 763.424 1.22400 0.612000 0.790858i \(-0.290365\pi\)
0.612000 + 0.790858i \(0.290365\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −148.627 + 257.429i −0.219969 + 0.380997i
\(78\) 0 0
\(79\) −31.9825 55.3952i −0.0455482 0.0788918i 0.842352 0.538927i \(-0.181170\pi\)
−0.887901 + 0.460035i \(0.847837\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 458.663 + 794.427i 0.606564 + 1.05060i 0.991802 + 0.127782i \(0.0407858\pi\)
−0.385239 + 0.922817i \(0.625881\pi\)
\(84\) 0 0
\(85\) 160.907 278.699i 0.205327 0.355637i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1318.88 1.57080 0.785399 0.618990i \(-0.212458\pi\)
0.785399 + 0.618990i \(0.212458\pi\)
\(90\) 0 0
\(91\) 1093.62 1.25981
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −361.256 + 625.714i −0.390149 + 0.675757i
\(96\) 0 0
\(97\) 64.0845 + 110.998i 0.0670804 + 0.116187i 0.897615 0.440780i \(-0.145298\pi\)
−0.830535 + 0.556967i \(0.811965\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −230.204 398.725i −0.226793 0.392818i 0.730063 0.683380i \(-0.239491\pi\)
−0.956856 + 0.290563i \(0.906158\pi\)
\(102\) 0 0
\(103\) −358.731 + 621.340i −0.343173 + 0.594393i −0.985020 0.172440i \(-0.944835\pi\)
0.641847 + 0.766832i \(0.278168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1361.76 −1.23034 −0.615171 0.788393i \(-0.710913\pi\)
−0.615171 + 0.788393i \(0.710913\pi\)
\(108\) 0 0
\(109\) 225.862 0.198474 0.0992369 0.995064i \(-0.468360\pi\)
0.0992369 + 0.995064i \(0.468360\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 984.234 1704.74i 0.819371 1.41919i −0.0867746 0.996228i \(-0.527656\pi\)
0.906146 0.422965i \(-0.139011\pi\)
\(114\) 0 0
\(115\) 67.3627 + 116.676i 0.0546226 + 0.0946091i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 441.992 + 765.552i 0.340482 + 0.589732i
\(120\) 0 0
\(121\) 431.290 747.017i 0.324035 0.561245i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 751.204 0.524871 0.262435 0.964950i \(-0.415474\pi\)
0.262435 + 0.964950i \(0.415474\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −39.7899 + 68.9181i −0.0265378 + 0.0459649i −0.878989 0.476841i \(-0.841782\pi\)
0.852451 + 0.522806i \(0.175115\pi\)
\(132\) 0 0
\(133\) −992.328 1718.76i −0.646960 1.12057i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 401.792 + 695.924i 0.250565 + 0.433991i 0.963682 0.267054i \(-0.0860503\pi\)
−0.713116 + 0.701046i \(0.752717\pi\)
\(138\) 0 0
\(139\) −880.833 + 1525.65i −0.537491 + 0.930962i 0.461547 + 0.887116i \(0.347294\pi\)
−0.999038 + 0.0438460i \(0.986039\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1723.36 1.00779
\(144\) 0 0
\(145\) 1485.03 0.850518
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1204.96 + 2087.04i −0.662509 + 1.14750i 0.317446 + 0.948276i \(0.397175\pi\)
−0.979954 + 0.199222i \(0.936158\pi\)
\(150\) 0 0
\(151\) −923.839 1600.14i −0.497887 0.862366i 0.502110 0.864804i \(-0.332557\pi\)
−0.999997 + 0.00243799i \(0.999224\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −241.627 418.510i −0.125212 0.216874i
\(156\) 0 0
\(157\) 43.0700 74.5995i 0.0218940 0.0379216i −0.854871 0.518841i \(-0.826364\pi\)
0.876765 + 0.480919i \(0.159697\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −370.074 −0.181155
\(162\) 0 0
\(163\) −1127.15 −0.541625 −0.270812 0.962632i \(-0.587292\pi\)
−0.270812 + 0.962632i \(0.587292\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −484.322 + 838.871i −0.224419 + 0.388705i −0.956145 0.292894i \(-0.905382\pi\)
0.731726 + 0.681599i \(0.238715\pi\)
\(168\) 0 0
\(169\) −2071.70 3588.28i −0.942966 1.63326i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 876.037 + 1517.34i 0.384993 + 0.666828i 0.991768 0.128046i \(-0.0408704\pi\)
−0.606775 + 0.794874i \(0.707537\pi\)
\(174\) 0 0
\(175\) 171.680 297.358i 0.0741588 0.128447i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 880.297 0.367578 0.183789 0.982966i \(-0.441164\pi\)
0.183789 + 0.982966i \(0.441164\pi\)
\(180\) 0 0
\(181\) 335.846 0.137919 0.0689593 0.997619i \(-0.478032\pi\)
0.0689593 + 0.997619i \(0.478032\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1003.95 1738.89i 0.398983 0.691059i
\(186\) 0 0
\(187\) 696.502 + 1206.38i 0.272370 + 0.471759i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1988.65 3444.43i −0.753368 1.30487i −0.946181 0.323637i \(-0.895094\pi\)
0.192813 0.981235i \(-0.438239\pi\)
\(192\) 0 0
\(193\) −2079.55 + 3601.89i −0.775593 + 1.34337i 0.158867 + 0.987300i \(0.449216\pi\)
−0.934460 + 0.356067i \(0.884118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1581.17 −0.571846 −0.285923 0.958253i \(-0.592300\pi\)
−0.285923 + 0.958253i \(0.592300\pi\)
\(198\) 0 0
\(199\) −2139.37 −0.762090 −0.381045 0.924557i \(-0.624436\pi\)
−0.381045 + 0.924557i \(0.624436\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2039.60 + 3532.69i −0.705182 + 1.22141i
\(204\) 0 0
\(205\) 29.2224 + 50.6147i 0.00995601 + 0.0172443i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1563.73 2708.47i −0.517539 0.896405i
\(210\) 0 0
\(211\) 88.1421 152.667i 0.0287581 0.0498105i −0.851288 0.524698i \(-0.824178\pi\)
0.880046 + 0.474888i \(0.157511\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1461.36 −0.463552
\(216\) 0 0
\(217\) 1327.44 0.415265
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2562.49 4438.37i 0.779964 1.35094i
\(222\) 0 0
\(223\) 1811.18 + 3137.06i 0.543883 + 0.942033i 0.998676 + 0.0514358i \(0.0163798\pi\)
−0.454793 + 0.890597i \(0.650287\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 388.172 + 672.333i 0.113497 + 0.196583i 0.917178 0.398478i \(-0.130461\pi\)
−0.803681 + 0.595061i \(0.797128\pi\)
\(228\) 0 0
\(229\) −2543.04 + 4404.68i −0.733838 + 1.27105i 0.221393 + 0.975185i \(0.428940\pi\)
−0.955231 + 0.295861i \(0.904394\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3896.93 −1.09569 −0.547846 0.836579i \(-0.684552\pi\)
−0.547846 + 0.836579i \(0.684552\pi\)
\(234\) 0 0
\(235\) 876.812 0.243391
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −617.365 + 1069.31i −0.167088 + 0.289405i −0.937395 0.348268i \(-0.886770\pi\)
0.770307 + 0.637673i \(0.220103\pi\)
\(240\) 0 0
\(241\) −959.223 1661.42i −0.256386 0.444073i 0.708885 0.705324i \(-0.249198\pi\)
−0.965271 + 0.261251i \(0.915865\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −385.916 668.426i −0.100634 0.174303i
\(246\) 0 0
\(247\) −5753.12 + 9964.70i −1.48203 + 2.56696i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7109.99 −1.78796 −0.893981 0.448105i \(-0.852099\pi\)
−0.893981 + 0.448105i \(0.852099\pi\)
\(252\) 0 0
\(253\) −583.172 −0.144916
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2091.14 + 3621.96i −0.507555 + 0.879111i 0.492407 + 0.870365i \(0.336117\pi\)
−0.999962 + 0.00874607i \(0.997216\pi\)
\(258\) 0 0
\(259\) 2757.73 + 4776.52i 0.661610 + 1.14594i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2108.30 3651.69i −0.494310 0.856170i 0.505668 0.862728i \(-0.331246\pi\)
−0.999978 + 0.00655782i \(0.997913\pi\)
\(264\) 0 0
\(265\) −388.515 + 672.927i −0.0900614 + 0.155991i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3271.14 0.741431 0.370715 0.928747i \(-0.379113\pi\)
0.370715 + 0.928747i \(0.379113\pi\)
\(270\) 0 0
\(271\) 6407.18 1.43619 0.718096 0.695944i \(-0.245014\pi\)
0.718096 + 0.695944i \(0.245014\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 270.538 468.585i 0.0593237 0.102752i
\(276\) 0 0
\(277\) −3163.13 5478.70i −0.686116 1.18839i −0.973085 0.230448i \(-0.925981\pi\)
0.286969 0.957940i \(-0.407352\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1991.29 3449.01i −0.422741 0.732208i 0.573466 0.819230i \(-0.305599\pi\)
−0.996206 + 0.0870212i \(0.972265\pi\)
\(282\) 0 0
\(283\) 1839.84 3186.70i 0.386456 0.669362i −0.605514 0.795835i \(-0.707032\pi\)
0.991970 + 0.126473i \(0.0403657\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −160.541 −0.0330189
\(288\) 0 0
\(289\) −770.434 −0.156815
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4473.14 7747.71i 0.891890 1.54480i 0.0542823 0.998526i \(-0.482713\pi\)
0.837607 0.546273i \(-0.183954\pi\)
\(294\) 0 0
\(295\) −1487.91 2577.13i −0.293659 0.508632i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1072.77 + 1858.09i 0.207492 + 0.359386i
\(300\) 0 0
\(301\) 2007.09 3476.37i 0.384341 0.665697i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 310.535 0.0582989
\(306\) 0 0
\(307\) −9746.88 −1.81200 −0.906000 0.423278i \(-0.860879\pi\)
−0.906000 + 0.423278i \(0.860879\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2639.51 4571.77i 0.481264 0.833573i −0.518505 0.855074i \(-0.673511\pi\)
0.999769 + 0.0215015i \(0.00684466\pi\)
\(312\) 0 0
\(313\) −2267.20 3926.90i −0.409424 0.709142i 0.585402 0.810743i \(-0.300937\pi\)
−0.994825 + 0.101601i \(0.967603\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1117.38 + 1935.37i 0.197977 + 0.342905i 0.947872 0.318651i \(-0.103230\pi\)
−0.749896 + 0.661556i \(0.769896\pi\)
\(318\) 0 0
\(319\) −3214.05 + 5566.91i −0.564114 + 0.977075i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9300.58 −1.60216
\(324\) 0 0
\(325\) −1990.66 −0.339761
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1204.25 + 2085.82i −0.201800 + 0.349529i
\(330\) 0 0
\(331\) 920.763 + 1594.81i 0.152899 + 0.264829i 0.932292 0.361706i \(-0.117806\pi\)
−0.779393 + 0.626536i \(0.784472\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −401.659 695.694i −0.0655074 0.113462i
\(336\) 0 0
\(337\) −3517.09 + 6091.78i −0.568511 + 0.984690i 0.428203 + 0.903683i \(0.359147\pi\)
−0.996714 + 0.0810072i \(0.974186\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2091.81 0.332193
\(342\) 0 0
\(343\) 6831.03 1.07534
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5887.57 + 10197.6i −0.910839 + 1.57762i −0.0979579 + 0.995191i \(0.531231\pi\)
−0.812881 + 0.582429i \(0.802102\pi\)
\(348\) 0 0
\(349\) −3949.29 6840.37i −0.605733 1.04916i −0.991935 0.126746i \(-0.959547\pi\)
0.386202 0.922414i \(-0.373787\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4483.96 + 7766.44i 0.676082 + 1.17101i 0.976151 + 0.217091i \(0.0696568\pi\)
−0.300070 + 0.953917i \(0.597010\pi\)
\(354\) 0 0
\(355\) 2399.31 4155.72i 0.358710 0.621304i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8351.48 −1.22778 −0.613892 0.789390i \(-0.710397\pi\)
−0.613892 + 0.789390i \(0.710397\pi\)
\(360\) 0 0
\(361\) 14022.0 2.04432
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1908.56 3305.72i 0.273695 0.474053i
\(366\) 0 0
\(367\) −55.2588 95.7111i −0.00785964 0.0136133i 0.862069 0.506791i \(-0.169168\pi\)
−0.869928 + 0.493178i \(0.835835\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1067.20 1848.45i −0.149343 0.258670i
\(372\) 0 0
\(373\) −2447.97 + 4240.01i −0.339816 + 0.588578i −0.984398 0.175957i \(-0.943698\pi\)
0.644582 + 0.764535i \(0.277031\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 23649.6 3.23081
\(378\) 0 0
\(379\) 10326.8 1.39962 0.699808 0.714331i \(-0.253269\pi\)
0.699808 + 0.714331i \(0.253269\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4166.26 + 7216.17i −0.555838 + 0.962739i 0.442000 + 0.897015i \(0.354269\pi\)
−0.997838 + 0.0657244i \(0.979064\pi\)
\(384\) 0 0
\(385\) 743.134 + 1287.15i 0.0983730 + 0.170387i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1035.75 + 1793.97i 0.134999 + 0.233825i 0.925597 0.378510i \(-0.123564\pi\)
−0.790598 + 0.612335i \(0.790230\pi\)
\(390\) 0 0
\(391\) −867.129 + 1501.91i −0.112155 + 0.194258i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −319.825 −0.0407396
\(396\) 0 0
\(397\) −7891.46 −0.997635 −0.498818 0.866707i \(-0.666232\pi\)
−0.498818 + 0.866707i \(0.666232\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 866.818 1501.37i 0.107947 0.186970i −0.806991 0.590563i \(-0.798906\pi\)
0.914939 + 0.403593i \(0.132239\pi\)
\(402\) 0 0
\(403\) −3847.98 6664.90i −0.475637 0.823827i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4345.70 + 7526.97i 0.529258 + 0.916702i
\(408\) 0 0
\(409\) 4706.30 8151.55i 0.568977 0.985497i −0.427690 0.903925i \(-0.640673\pi\)
0.996667 0.0815720i \(-0.0259941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8174.21 0.973914
\(414\) 0 0
\(415\) 4586.63 0.542527
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1934.35 + 3350.40i −0.225535 + 0.390639i −0.956480 0.291798i \(-0.905746\pi\)
0.730945 + 0.682437i \(0.239080\pi\)
\(420\) 0 0
\(421\) −6462.48 11193.4i −0.748129 1.29580i −0.948719 0.316122i \(-0.897619\pi\)
0.200590 0.979675i \(-0.435714\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −804.535 1393.49i −0.0918251 0.159046i
\(426\) 0 0
\(427\) −426.501 + 738.721i −0.0483368 + 0.0837219i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13183.6 1.47339 0.736697 0.676223i \(-0.236384\pi\)
0.736697 + 0.676223i \(0.236384\pi\)
\(432\) 0 0
\(433\) −7584.46 −0.841769 −0.420884 0.907114i \(-0.638280\pi\)
−0.420884 + 0.907114i \(0.638280\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1946.81 3371.98i 0.213109 0.369116i
\(438\) 0 0
\(439\) 3773.23 + 6535.43i 0.410220 + 0.710521i 0.994914 0.100733i \(-0.0321187\pi\)
−0.584694 + 0.811254i \(0.698785\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1022.52 + 1771.06i 0.109665 + 0.189945i 0.915634 0.402012i \(-0.131689\pi\)
−0.805970 + 0.591957i \(0.798356\pi\)
\(444\) 0 0
\(445\) 3297.20 5710.92i 0.351241 0.608367i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10723.2 −1.12708 −0.563541 0.826088i \(-0.690561\pi\)
−0.563541 + 0.826088i \(0.690561\pi\)
\(450\) 0 0
\(451\) −252.984 −0.0264137
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2734.06 4735.53i 0.281702 0.487923i
\(456\) 0 0
\(457\) 2330.29 + 4036.18i 0.238526 + 0.413139i 0.960292 0.278998i \(-0.0900024\pi\)
−0.721766 + 0.692138i \(0.756669\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8320.18 14411.0i −0.840584 1.45593i −0.889401 0.457127i \(-0.848878\pi\)
0.0488170 0.998808i \(-0.484455\pi\)
\(462\) 0 0
\(463\) 1734.35 3003.97i 0.174086 0.301526i −0.765759 0.643128i \(-0.777636\pi\)
0.939845 + 0.341602i \(0.110970\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9920.55 0.983016 0.491508 0.870873i \(-0.336446\pi\)
0.491508 + 0.870873i \(0.336446\pi\)
\(468\) 0 0
\(469\) 2206.62 0.217254
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3162.82 5478.16i 0.307455 0.532528i
\(474\) 0 0
\(475\) 1806.28 + 3128.57i 0.174480 + 0.302208i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9132.33 + 15817.7i 0.871120 + 1.50882i 0.860839 + 0.508877i \(0.169939\pi\)
0.0102812 + 0.999947i \(0.496727\pi\)
\(480\) 0 0
\(481\) 15988.2 27692.4i 1.51559 2.62508i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 640.845 0.0599985
\(486\) 0 0
\(487\) −3244.55 −0.301899 −0.150949 0.988542i \(-0.548233\pi\)
−0.150949 + 0.988542i \(0.548233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −295.547 + 511.902i −0.0271646 + 0.0470505i −0.879288 0.476290i \(-0.841981\pi\)
0.852124 + 0.523341i \(0.175315\pi\)
\(492\) 0 0
\(493\) 9558.08 + 16555.1i 0.873173 + 1.51238i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6590.61 + 11415.3i 0.594827 + 1.03027i
\(498\) 0 0
\(499\) 4822.49 8352.79i 0.432634 0.749343i −0.564466 0.825457i \(-0.690918\pi\)
0.997099 + 0.0761132i \(0.0242510\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −723.099 −0.0640982 −0.0320491 0.999486i \(-0.510203\pi\)
−0.0320491 + 0.999486i \(0.510203\pi\)
\(504\) 0 0
\(505\) −2302.04 −0.202850
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1342.27 + 2324.88i −0.116886 + 0.202453i −0.918532 0.395346i \(-0.870625\pi\)
0.801646 + 0.597799i \(0.203958\pi\)
\(510\) 0 0
\(511\) 5242.58 + 9080.42i 0.453852 + 0.786094i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1793.65 + 3106.70i 0.153472 + 0.265820i
\(516\) 0 0
\(517\) −1897.68 + 3286.88i −0.161431 + 0.279607i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4203.80 0.353497 0.176748 0.984256i \(-0.443442\pi\)
0.176748 + 0.984256i \(0.443442\pi\)
\(522\) 0 0
\(523\) 10571.8 0.883883 0.441942 0.897044i \(-0.354290\pi\)
0.441942 + 0.897044i \(0.354290\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3110.35 5387.29i 0.257095 0.445302i
\(528\) 0 0
\(529\) 5720.48 + 9908.17i 0.470164 + 0.814347i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 465.376 + 806.055i 0.0378193 + 0.0655049i
\(534\) 0 0
\(535\) −3404.41 + 5896.61i −0.275113 + 0.476510i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3340.95 0.266985
\(540\) 0 0
\(541\) 15310.3 1.21671 0.608356 0.793664i \(-0.291829\pi\)
0.608356 + 0.793664i \(0.291829\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 564.654 978.010i 0.0443801 0.0768685i
\(546\) 0 0
\(547\) 447.172 + 774.525i 0.0349538 + 0.0605417i 0.882973 0.469424i \(-0.155538\pi\)
−0.848019 + 0.529965i \(0.822205\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21459.1 37168.2i −1.65914 2.87372i
\(552\) 0 0
\(553\) 439.260 760.820i 0.0337780 0.0585052i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25371.2 −1.93000 −0.965001 0.262245i \(-0.915537\pi\)
−0.965001 + 0.262245i \(0.915537\pi\)
\(558\) 0 0
\(559\) −23272.6 −1.76087
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 424.449 735.167i 0.0317733 0.0550330i −0.849701 0.527264i \(-0.823218\pi\)
0.881475 + 0.472231i \(0.156551\pi\)
\(564\) 0 0
\(565\) −4921.17 8523.72i −0.366434 0.634682i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4318.33 7479.57i −0.318161 0.551072i 0.661943 0.749554i \(-0.269732\pi\)
−0.980104 + 0.198482i \(0.936399\pi\)
\(570\) 0 0
\(571\) 3615.99 6263.08i 0.265017 0.459022i −0.702551 0.711633i \(-0.747956\pi\)
0.967568 + 0.252611i \(0.0812892\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 673.627 0.0488559
\(576\) 0 0
\(577\) −5882.23 −0.424403 −0.212201 0.977226i \(-0.568063\pi\)
−0.212201 + 0.977226i \(0.568063\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6299.46 + 10911.0i −0.449820 + 0.779111i
\(582\) 0 0
\(583\) −1681.72 2912.83i −0.119468 0.206925i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9666.38 + 16742.7i 0.679684 + 1.17725i 0.975076 + 0.221871i \(0.0712163\pi\)
−0.295392 + 0.955376i \(0.595450\pi\)
\(588\) 0 0
\(589\) −6983.14 + 12095.1i −0.488515 + 0.846132i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4318.26 0.299039 0.149519 0.988759i \(-0.452227\pi\)
0.149519 + 0.988759i \(0.452227\pi\)
\(594\) 0 0
\(595\) 4419.92 0.304536
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7690.82 13320.9i 0.524605 0.908643i −0.474984 0.879994i \(-0.657546\pi\)
0.999590 0.0286487i \(-0.00912042\pi\)
\(600\) 0 0
\(601\) −2086.27 3613.53i −0.141599 0.245256i 0.786500 0.617590i \(-0.211891\pi\)
−0.928099 + 0.372334i \(0.878558\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2156.45 3735.08i −0.144913 0.250996i
\(606\) 0 0
\(607\) −346.410 + 600.000i −0.0231637 + 0.0401207i −0.877375 0.479806i \(-0.840707\pi\)
0.854211 + 0.519926i \(0.174041\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13963.5 0.924555
\(612\) 0 0
\(613\) 11649.8 0.767584 0.383792 0.923419i \(-0.374618\pi\)
0.383792 + 0.923419i \(0.374618\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10893.6 + 18868.2i −0.710793 + 1.23113i 0.253767 + 0.967265i \(0.418330\pi\)
−0.964560 + 0.263864i \(0.915003\pi\)
\(618\) 0 0
\(619\) 2485.00 + 4304.15i 0.161358 + 0.279480i 0.935356 0.353708i \(-0.115079\pi\)
−0.773998 + 0.633188i \(0.781746\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9057.01 + 15687.2i 0.582442 + 1.00882i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25846.8 1.63844
\(630\) 0 0
\(631\) −16907.2 −1.06666 −0.533331 0.845906i \(-0.679060\pi\)
−0.533331 + 0.845906i \(0.679060\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1878.01 3252.81i 0.117365 0.203282i
\(636\) 0 0
\(637\) −6145.83 10644.9i −0.382271 0.662113i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10734.9 + 18593.5i 0.661474 + 1.14571i 0.980229 + 0.197869i \(0.0634020\pi\)
−0.318755 + 0.947837i \(0.603265\pi\)
\(642\) 0 0
\(643\) 8856.22 15339.4i 0.543165 0.940790i −0.455555 0.890208i \(-0.650559\pi\)
0.998720 0.0505819i \(-0.0161076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12632.9 −0.767619 −0.383809 0.923412i \(-0.625388\pi\)
−0.383809 + 0.923412i \(0.625388\pi\)
\(648\) 0 0
\(649\) 12881.1 0.779088
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8085.08 14003.8i 0.484523 0.839219i −0.515319 0.856999i \(-0.672326\pi\)
0.999842 + 0.0177796i \(0.00565971\pi\)
\(654\) 0 0
\(655\) 198.949 + 344.590i 0.0118681 + 0.0205561i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3876.38 + 6714.09i 0.229139 + 0.396880i 0.957553 0.288257i \(-0.0930758\pi\)
−0.728414 + 0.685137i \(0.759742\pi\)
\(660\) 0 0
\(661\) −5846.77 + 10126.9i −0.344044 + 0.595901i −0.985180 0.171526i \(-0.945130\pi\)
0.641136 + 0.767427i \(0.278464\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9923.28 −0.578659
\(666\) 0 0
\(667\) −8002.85 −0.464575
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −672.091 + 1164.10i −0.0386673 + 0.0669738i
\(672\) 0 0
\(673\) 2059.46 + 3567.08i 0.117959 + 0.204310i 0.918959 0.394354i \(-0.129032\pi\)
−0.801000 + 0.598664i \(0.795698\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6801.97 11781.4i −0.386146 0.668825i 0.605781 0.795631i \(-0.292861\pi\)
−0.991928 + 0.126806i \(0.959527\pi\)
\(678\) 0 0
\(679\) −880.162 + 1524.49i −0.0497460 + 0.0861626i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28073.3 −1.57276 −0.786381 0.617742i \(-0.788048\pi\)
−0.786381 + 0.617742i \(0.788048\pi\)
\(684\) 0 0
\(685\) 4017.92 0.224112
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6187.22 + 10716.6i −0.342111 + 0.592553i
\(690\) 0 0
\(691\) 7958.75 + 13785.0i 0.438155 + 0.758907i 0.997547 0.0699960i \(-0.0222987\pi\)
−0.559392 + 0.828903i \(0.688965\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4404.16 + 7628.23i 0.240373 + 0.416339i
\(696\) 0 0
\(697\) −376.167 + 651.541i −0.0204424 + 0.0354073i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17451.6 −0.940280 −0.470140 0.882592i \(-0.655797\pi\)
−0.470140 + 0.882592i \(0.655797\pi\)
\(702\) 0 0
\(703\) −58029.3 −3.11325
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3161.71 5476.24i 0.168187 0.291309i
\(708\) 0 0
\(709\) −15089.1 26135.1i −0.799273 1.38438i −0.920090 0.391706i \(-0.871885\pi\)
0.120818 0.992675i \(-0.461448\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1302.13 + 2255.36i 0.0683943 + 0.118462i
\(714\) 0 0
\(715\) 4308.40 7462.36i 0.225349 0.390317i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7009.26 0.363562 0.181781 0.983339i \(-0.441814\pi\)
0.181781 + 0.983339i \(0.441814\pi\)
\(720\) 0 0
\(721\) −9853.90 −0.508985
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3712.58 6430.38i 0.190182 0.329404i
\(726\) 0 0
\(727\) 15583.0 + 26990.6i 0.794968 + 1.37693i 0.922859 + 0.385137i \(0.125846\pi\)
−0.127891 + 0.991788i \(0.540821\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9405.70 16291.1i −0.475899 0.824282i
\(732\) 0 0
\(733\) −16038.1 + 27778.7i −0.808158 + 1.39977i 0.105981 + 0.994368i \(0.466202\pi\)
−0.914139 + 0.405402i \(0.867132\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3477.24 0.173794
\(738\) 0 0
\(739\) −35798.6 −1.78197 −0.890984 0.454035i \(-0.849984\pi\)
−0.890984 + 0.454035i \(0.849984\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −521.962 + 904.064i −0.0257724 + 0.0446392i −0.878624 0.477514i \(-0.841538\pi\)
0.852852 + 0.522153i \(0.174871\pi\)
\(744\) 0 0
\(745\) 6024.78 + 10435.2i 0.296283 + 0.513177i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9351.50 16197.3i −0.456204 0.790168i
\(750\) 0 0
\(751\) 20122.4 34853.0i 0.977731 1.69348i 0.307118 0.951672i \(-0.400635\pi\)
0.670613 0.741808i \(-0.266031\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9238.39 −0.445324
\(756\) 0 0
\(757\) 1971.31 0.0946480 0.0473240 0.998880i \(-0.484931\pi\)
0.0473240 + 0.998880i \(0.484931\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7438.23 + 12883.4i −0.354317 + 0.613696i −0.987001 0.160715i \(-0.948620\pi\)
0.632683 + 0.774410i \(0.281953\pi\)
\(762\) 0 0
\(763\) 1551.04 + 2686.48i 0.0735928 + 0.127467i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23695.4 41041.7i −1.11550 1.93211i
\(768\) 0 0
\(769\) −1142.37 + 1978.64i −0.0535695 + 0.0927851i −0.891567 0.452890i \(-0.850393\pi\)
0.837997 + 0.545675i \(0.183727\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15649.7 −0.728177 −0.364089 0.931364i \(-0.618620\pi\)
−0.364089 + 0.931364i \(0.618620\pi\)
\(774\) 0 0
\(775\) −2416.27 −0.111993
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 844.543 1462.79i 0.0388432 0.0672785i
\(780\) 0 0
\(781\) 10385.6 + 17988.5i 0.475836 + 0.824171i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −215.350 372.997i −0.00979131 0.0169590i
\(786\) 0 0
\(787\) 15210.3 26345.1i 0.688932 1.19327i −0.283251 0.959046i \(-0.591413\pi\)
0.972184 0.234220i \(-0.0752536\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27035.7 1.21527
\(792\) 0 0
\(793\) 4945.37 0.221457
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9307.98 + 16121.9i −0.413683 + 0.716521i −0.995289 0.0969501i \(-0.969091\pi\)
0.581606 + 0.813471i \(0.302425\pi\)
\(798\) 0 0
\(799\) 5643.40 + 9774.66i 0.249874 + 0.432794i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8261.39 + 14309.2i 0.363061 + 0.628841i
\(804\) 0 0
\(805\) −925.185 + 1602.47i −0.0405075 + 0.0701610i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42989.2 −1.86826 −0.934129 0.356935i \(-0.883822\pi\)
−0.934129 + 0.356935i \(0.883822\pi\)
\(810\) 0 0
\(811\) −28303.4 −1.22548 −0.612741 0.790284i \(-0.709933\pi\)
−0.612741 + 0.790284i \(0.709933\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2817.86 + 4880.68i −0.121111 + 0.209770i
\(816\) 0 0
\(817\) 21117.0 + 36575.7i 0.904271 + 1.56624i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5297.09 + 9174.83i 0.225176 + 0.390017i 0.956372 0.292151i \(-0.0943708\pi\)
−0.731196 + 0.682167i \(0.761038\pi\)
\(822\) 0 0
\(823\) 12299.2 21302.8i 0.520925 0.902269i −0.478779 0.877936i \(-0.658920\pi\)
0.999704 0.0243334i \(-0.00774633\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15104.9 0.635126 0.317563 0.948237i \(-0.397135\pi\)
0.317563 + 0.948237i \(0.397135\pi\)
\(828\) 0 0
\(829\) −33824.6 −1.41710 −0.708551 0.705660i \(-0.750651\pi\)
−0.708551 + 0.705660i \(0.750651\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4967.72 8604.35i 0.206628 0.357891i
\(834\) 0 0
\(835\) 2421.61 + 4194.36i 0.100363 + 0.173834i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2683.31 + 4647.63i 0.110415 + 0.191244i 0.915938 0.401321i \(-0.131449\pi\)
−0.805523 + 0.592565i \(0.798115\pi\)
\(840\) 0 0
\(841\) −31911.9 + 55273.0i −1.30845 + 2.26631i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −20717.0 −0.843414
\(846\) 0 0
\(847\) 11847.0 0.480600
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5410.30 + 9370.91i −0.217935 + 0.377474i
\(852\) 0 0
\(853\) −8191.63 14188.3i −0.328812 0.569518i 0.653465 0.756957i \(-0.273315\pi\)
−0.982276 + 0.187439i \(0.939981\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14059.2 24351.2i −0.560389 0.970622i −0.997462 0.0711960i \(-0.977318\pi\)
0.437074 0.899426i \(-0.356015\pi\)
\(858\) 0 0
\(859\) −16111.5 + 27905.9i −0.639949 + 1.10842i 0.345494 + 0.938421i \(0.387711\pi\)
−0.985443 + 0.170003i \(0.945622\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37447.4 −1.47709 −0.738543 0.674206i \(-0.764486\pi\)
−0.738543 + 0.674206i \(0.764486\pi\)
\(864\) 0 0
\(865\) 8760.37 0.344349
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 692.196 1198.92i 0.0270209 0.0468016i
\(870\) 0 0
\(871\) −6396.55 11079.1i −0.248839 0.431002i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −858.400 1486.79i −0.0331648 0.0574431i
\(876\) 0 0
\(877\) 3916.87 6784.21i 0.150813 0.261216i −0.780713 0.624889i \(-0.785144\pi\)
0.931527 + 0.363673i \(0.118477\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3195.87 0.122215 0.0611076 0.998131i \(-0.480537\pi\)
0.0611076 + 0.998131i \(0.480537\pi\)
\(882\) 0 0
\(883\) 6033.49 0.229947 0.114973 0.993369i \(-0.463322\pi\)
0.114973 + 0.993369i \(0.463322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1739.61 + 3013.09i −0.0658515 + 0.114058i −0.897071 0.441886i \(-0.854310\pi\)
0.831220 + 0.555944i \(0.187643\pi\)
\(888\) 0 0
\(889\) 5158.67 + 8935.08i 0.194619 + 0.337090i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12670.2 21945.3i −0.474793 0.822366i
\(894\) 0 0
\(895\) 2200.74 3811.80i 0.0821930 0.142362i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 28705.9 1.06496
\(900\) 0 0
\(901\) −10002.3 −0.369841
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 839.616 1454.26i 0.0308395 0.0534156i
\(906\) 0 0
\(907\) −2191.65 3796.06i −0.0802345 0.138970i 0.823116 0.567873i \(-0.192234\pi\)
−0.903351 + 0.428903i \(0.858900\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2342.68 4057.64i −0.0851992 0.147569i 0.820277 0.571967i \(-0.193819\pi\)
−0.905476 + 0.424397i \(0.860486\pi\)
\(912\) 0 0
\(913\) −9926.84 + 17193.8i −0.359836 + 0.623255i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1092.98 −0.0393603
\(918\) 0 0
\(919\) 36353.0 1.30487 0.652434 0.757846i \(-0.273748\pi\)
0.652434 + 0.757846i \(0.273748\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 38209.7 66181.2i 1.36261 2.36011i
\(924\) 0 0
\(925\) −5019.75 8694.46i −0.178431 0.309051i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4271.06 + 7397.69i 0.150838 + 0.261260i 0.931536 0.363649i \(-0.118469\pi\)
−0.780698 + 0.624909i \(0.785136\pi\)
\(930\) 0 0
\(931\) −11153.2 + 19317.8i −0.392621 + 0.680040i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6965.02 0.243615
\(936\) 0 0
\(937\) 33521.5 1.16873 0.584364 0.811491i \(-0.301344\pi\)
0.584364 + 0.811491i \(0.301344\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12037.0 20848.7i 0.416997 0.722260i −0.578639 0.815584i \(-0.696416\pi\)
0.995636 + 0.0933239i \(0.0297492\pi\)
\(942\) 0 0
\(943\) −157.480 272.763i −0.00543823 0.00941930i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20540.1 35576.6i −0.704820 1.22078i −0.966756 0.255699i \(-0.917694\pi\)
0.261936 0.965085i \(-0.415639\pi\)
\(948\) 0 0
\(949\) 30394.4 52644.7i 1.03967 1.80076i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28047.0 0.953337 0.476668 0.879083i \(-0.341844\pi\)
0.476668 + 0.879083i \(0.341844\pi\)
\(954\) 0 0
\(955\) −19886.5 −0.673833
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5518.37 + 9558.10i −0.185816 + 0.321843i
\(960\) 0 0
\(961\) 10224.8 + 17709.9i 0.343218 + 0.594472i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10397.8 + 18009.5i 0.346856 + 0.600772i
\(966\) 0 0
\(967\) 2656.52 4601.22i 0.0883432 0.153015i −0.818468 0.574552i \(-0.805176\pi\)
0.906811 + 0.421538i \(0.138509\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17611.7 −0.582065 −0.291032 0.956713i \(-0.593999\pi\)
−0.291032 + 0.956713i \(0.593999\pi\)
\(972\) 0 0
\(973\) −24195.4 −0.797193
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21636.6 + 37475.6i −0.708511 + 1.22718i 0.256899 + 0.966438i \(0.417299\pi\)
−0.965409 + 0.260738i \(0.916034\pi\)
\(978\) 0 0
\(979\) 14272.3 + 24720.3i 0.465928 + 0.807011i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23359.8 + 40460.4i 0.757948 + 1.31280i 0.943895 + 0.330245i \(0.107131\pi\)
−0.185947 + 0.982560i \(0.559535\pi\)
\(984\) 0 0
\(985\) −3952.93 + 6846.67i −0.127869 + 0.221475i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7875.27 0.253204
\(990\) 0 0
\(991\) −4961.78 −0.159047 −0.0795237 0.996833i \(-0.525340\pi\)
−0.0795237 + 0.996833i \(0.525340\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5348.42 + 9263.74i −0.170408 + 0.295156i
\(996\) 0 0
\(997\) −14670.1 25409.3i −0.466004 0.807142i 0.533243 0.845962i \(-0.320973\pi\)
−0.999246 + 0.0388205i \(0.987640\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.4.i.c.361.5 14
3.2 odd 2 180.4.i.c.121.1 yes 14
9.2 odd 6 180.4.i.c.61.1 14
9.4 even 3 1620.4.a.k.1.3 7
9.5 odd 6 1620.4.a.l.1.3 7
9.7 even 3 inner 540.4.i.c.181.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.4.i.c.61.1 14 9.2 odd 6
180.4.i.c.121.1 yes 14 3.2 odd 2
540.4.i.c.181.5 14 9.7 even 3 inner
540.4.i.c.361.5 14 1.1 even 1 trivial
1620.4.a.k.1.3 7 9.4 even 3
1620.4.a.l.1.3 7 9.5 odd 6