Properties

Label 4-5400e2-1.1-c1e2-0-36
Degree $4$
Conductor $29160000$
Sign $1$
Analytic cond. $1859.26$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 4·11-s + 2·13-s − 2·19-s + 4·23-s − 4·29-s + 12·31-s − 10·37-s − 4·41-s + 12·43-s − 11·49-s − 4·53-s − 2·61-s + 10·67-s − 28·71-s − 2·73-s + 8·77-s + 2·79-s + 20·83-s − 24·89-s − 4·91-s − 22·97-s − 24·101-s − 2·103-s − 4·107-s − 20·113-s − 4·121-s + ⋯
L(s)  = 1  − 0.755·7-s − 1.20·11-s + 0.554·13-s − 0.458·19-s + 0.834·23-s − 0.742·29-s + 2.15·31-s − 1.64·37-s − 0.624·41-s + 1.82·43-s − 1.57·49-s − 0.549·53-s − 0.256·61-s + 1.22·67-s − 3.32·71-s − 0.234·73-s + 0.911·77-s + 0.225·79-s + 2.19·83-s − 2.54·89-s − 0.419·91-s − 2.23·97-s − 2.38·101-s − 0.197·103-s − 0.386·107-s − 1.88·113-s − 0.363·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29160000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(29160000\)    =    \(2^{6} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1859.26\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 29160000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
11$D_{4}$ \( 1 + 4 T + 20 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 4 T + 44 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 56 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 + 10 T + 75 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 32 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 104 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 10 T + 63 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 28 T + 332 T^{2} + 28 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 2 T + 123 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 2 T + 135 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 20 T + 260 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 + 22 T + 3 p T^{2} + 22 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.963459057594579122403119533656, −7.78829570250052895617560346284, −7.17945594294472859161581297922, −6.90653048493958958531445178052, −6.60335726409188197834078815252, −6.26426364323389455850012260092, −5.76295786303059734440524597597, −5.58229840793489948713227592113, −4.92810387794930377824471525324, −4.92577956599006983336175910839, −4.13426275597960821572306435630, −4.06068231896071888977684577272, −3.23756246352056233385789328412, −3.18094941228393760994396172663, −2.48212152249939269578907577761, −2.46396904581188590258298956592, −1.32513231348801711207744572949, −1.32399054697859197599549013288, 0, 0, 1.32399054697859197599549013288, 1.32513231348801711207744572949, 2.46396904581188590258298956592, 2.48212152249939269578907577761, 3.18094941228393760994396172663, 3.23756246352056233385789328412, 4.06068231896071888977684577272, 4.13426275597960821572306435630, 4.92577956599006983336175910839, 4.92810387794930377824471525324, 5.58229840793489948713227592113, 5.76295786303059734440524597597, 6.26426364323389455850012260092, 6.60335726409188197834078815252, 6.90653048493958958531445178052, 7.17945594294472859161581297922, 7.78829570250052895617560346284, 7.963459057594579122403119533656

Graph of the $Z$-function along the critical line