L(s) = 1 | − 2·7-s − 4·11-s + 2·13-s − 2·19-s + 4·23-s − 4·29-s + 12·31-s − 10·37-s − 4·41-s + 12·43-s − 11·49-s − 4·53-s − 2·61-s + 10·67-s − 28·71-s − 2·73-s + 8·77-s + 2·79-s + 20·83-s − 24·89-s − 4·91-s − 22·97-s − 24·101-s − 2·103-s − 4·107-s − 20·113-s − 4·121-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1.20·11-s + 0.554·13-s − 0.458·19-s + 0.834·23-s − 0.742·29-s + 2.15·31-s − 1.64·37-s − 0.624·41-s + 1.82·43-s − 1.57·49-s − 0.549·53-s − 0.256·61-s + 1.22·67-s − 3.32·71-s − 0.234·73-s + 0.911·77-s + 0.225·79-s + 2.19·83-s − 2.54·89-s − 0.419·91-s − 2.23·97-s − 2.38·101-s − 0.197·103-s − 0.386·107-s − 1.88·113-s − 0.363·121-s + ⋯ |
Λ(s)=(=(29160000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(29160000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
29160000
= 26⋅36⋅54
|
Sign: |
1
|
Analytic conductor: |
1859.26 |
Root analytic conductor: |
6.56652 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 29160000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C2 | (1+T+pT2)2 |
| 11 | D4 | 1+4T+20T2+4pT3+p2T4 |
| 13 | D4 | 1−2T+3T2−2pT3+p2T4 |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | D4 | 1+2T+15T2+2pT3+p2T4 |
| 23 | D4 | 1−4T+44T2−4pT3+p2T4 |
| 29 | D4 | 1+4T+56T2+4pT3+p2T4 |
| 31 | C2 | (1−6T+pT2)2 |
| 37 | D4 | 1+10T+75T2+10pT3+p2T4 |
| 41 | D4 | 1+4T+32T2+4pT3+p2T4 |
| 43 | C2 | (1−6T+pT2)2 |
| 47 | C22 | 1+70T2+p2T4 |
| 53 | D4 | 1+4T+104T2+4pT3+p2T4 |
| 59 | C22 | 1+94T2+p2T4 |
| 61 | D4 | 1+2T+27T2+2pT3+p2T4 |
| 67 | D4 | 1−10T+63T2−10pT3+p2T4 |
| 71 | D4 | 1+28T+332T2+28pT3+p2T4 |
| 73 | D4 | 1+2T+123T2+2pT3+p2T4 |
| 79 | D4 | 1−2T+135T2−2pT3+p2T4 |
| 83 | D4 | 1−20T+260T2−20pT3+p2T4 |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | D4 | 1+22T+3pT2+22pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.963459057594579122403119533656, −7.78829570250052895617560346284, −7.17945594294472859161581297922, −6.90653048493958958531445178052, −6.60335726409188197834078815252, −6.26426364323389455850012260092, −5.76295786303059734440524597597, −5.58229840793489948713227592113, −4.92810387794930377824471525324, −4.92577956599006983336175910839, −4.13426275597960821572306435630, −4.06068231896071888977684577272, −3.23756246352056233385789328412, −3.18094941228393760994396172663, −2.48212152249939269578907577761, −2.46396904581188590258298956592, −1.32513231348801711207744572949, −1.32399054697859197599549013288, 0, 0,
1.32399054697859197599549013288, 1.32513231348801711207744572949, 2.46396904581188590258298956592, 2.48212152249939269578907577761, 3.18094941228393760994396172663, 3.23756246352056233385789328412, 4.06068231896071888977684577272, 4.13426275597960821572306435630, 4.92577956599006983336175910839, 4.92810387794930377824471525324, 5.58229840793489948713227592113, 5.76295786303059734440524597597, 6.26426364323389455850012260092, 6.60335726409188197834078815252, 6.90653048493958958531445178052, 7.17945594294472859161581297922, 7.78829570250052895617560346284, 7.963459057594579122403119533656