Properties

Label 5400.2.a.bw
Level $5400$
Weight $2$
Character orbit 5400.a
Self dual yes
Analytic conductor $43.119$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5400,2,Mod(1,5400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5400 = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1192170915\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{7} + ( - \beta - 2) q^{11} + (2 \beta + 1) q^{13} - 2 \beta q^{17} + (2 \beta - 1) q^{19} + ( - \beta + 2) q^{23} + ( - \beta - 2) q^{29} + 6 q^{31} + ( - 2 \beta - 5) q^{37} + (3 \beta - 2) q^{41} + \cdots + (2 \beta - 11) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 4 q^{11} + 2 q^{13} - 2 q^{19} + 4 q^{23} - 4 q^{29} + 12 q^{31} - 10 q^{37} - 4 q^{41} + 12 q^{43} - 12 q^{49} - 4 q^{53} - 2 q^{61} + 10 q^{67} - 28 q^{71} - 2 q^{73} + 4 q^{77} + 2 q^{79}+ \cdots - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.44949
−2.44949
0 0 0 0 0 −1.00000 0 0 0
1.2 0 0 0 0 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5400.2.a.bw 2
3.b odd 2 1 5400.2.a.bz 2
5.b even 2 1 5400.2.a.cc 2
5.c odd 4 2 1080.2.f.f yes 4
15.d odd 2 1 5400.2.a.cf 2
15.e even 4 2 1080.2.f.e 4
20.e even 4 2 2160.2.f.n 4
60.l odd 4 2 2160.2.f.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.f.e 4 15.e even 4 2
1080.2.f.f yes 4 5.c odd 4 2
2160.2.f.i 4 60.l odd 4 2
2160.2.f.n 4 20.e even 4 2
5400.2.a.bw 2 1.a even 1 1 trivial
5400.2.a.bz 2 3.b odd 2 1
5400.2.a.cc 2 5.b even 2 1
5400.2.a.cf 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5400))\):

\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 2T_{13} - 23 \) Copy content Toggle raw display
\( T_{17}^{2} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 2 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 23 \) Copy content Toggle raw display
$17$ \( T^{2} - 24 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 23 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 2 \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 2 \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 10T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 50 \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 24 \) Copy content Toggle raw display
$53$ \( T^{2} + 4T - 2 \) Copy content Toggle raw display
$59$ \( T^{2} - 24 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T - 95 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T - 71 \) Copy content Toggle raw display
$71$ \( T^{2} + 28T + 190 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 23 \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 23 \) Copy content Toggle raw display
$83$ \( T^{2} - 20T + 94 \) Copy content Toggle raw display
$89$ \( (T + 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 22T + 97 \) Copy content Toggle raw display
show more
show less