L(s) = 1 | − 2i·7-s − 4·11-s − 2i·13-s + 5i·17-s + 5·19-s − i·23-s − 2·29-s + 7·31-s + 6i·37-s + 4i·43-s + 4i·47-s + 3·49-s − 9i·53-s + 14·59-s − 11·61-s + ⋯ |
L(s) = 1 | − 0.755i·7-s − 1.20·11-s − 0.554i·13-s + 1.21i·17-s + 1.14·19-s − 0.208i·23-s − 0.371·29-s + 1.25·31-s + 0.986i·37-s + 0.609i·43-s + 0.583i·47-s + 0.428·49-s − 1.23i·53-s + 1.82·59-s − 1.40·61-s + ⋯ |
Λ(s)=(=(5400s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(5400s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
5400
= 23⋅33⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
43.1192 |
Root analytic conductor: |
6.56652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5400(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5400, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.572430336 |
L(21) |
≈ |
1.572430336 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+2iT−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−5iT−17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−7T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1+9iT−53T2 |
| 59 | 1−14T+59T2 |
| 61 | 1+11T+61T2 |
| 67 | 1+14iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+12iT−73T2 |
| 79 | 1−3T+79T2 |
| 83 | 1−iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1+16iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.975715896203517819245614427972, −7.51341788346161165351386086067, −6.62069475559202915648586693719, −5.88320244115332881198355048646, −5.11400302517237359093259604316, −4.42867012941824790532438985113, −3.45089141863871636893810066595, −2.81095020440496331154088398882, −1.62541473600245785047055149123, −0.51320670619519088892062977641,
0.902818176387185737754311669214, 2.32446047100163260834764846634, 2.75859437368975164278226958323, 3.80465457221140442853936743674, 4.84453364938573235203482031350, 5.38505375582839570961371897164, 5.97811384516288082467007100774, 7.10789473179686956302803286314, 7.44615503305948131248514102896, 8.345270183361947044599939969315