Properties

Label 2-5408-1.1-c1-0-13
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.19·3-s − 1.56·5-s + 3.07·7-s − 1.56·9-s − 5.47·11-s + 1.87·15-s − 2.12·17-s − 7.34·19-s − 3.68·21-s − 3.59·23-s − 2.56·25-s + 5.47·27-s − 5·29-s + 6.67·31-s + 6.56·33-s − 4.79·35-s + 6.12·37-s − 4.12·41-s − 0.673·43-s + 2.43·45-s − 0.525·47-s + 2.43·49-s + 2.54·51-s + 1.56·53-s + 8.54·55-s + 8.80·57-s − 10.2·59-s + ⋯
L(s)  = 1  − 0.692·3-s − 0.698·5-s + 1.16·7-s − 0.520·9-s − 1.64·11-s + 0.483·15-s − 0.514·17-s − 1.68·19-s − 0.804·21-s − 0.750·23-s − 0.512·25-s + 1.05·27-s − 0.928·29-s + 1.19·31-s + 1.14·33-s − 0.810·35-s + 1.00·37-s − 0.643·41-s − 0.102·43-s + 0.363·45-s − 0.0767·47-s + 0.348·49-s + 0.356·51-s + 0.214·53-s + 1.15·55-s + 1.16·57-s − 1.33·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5438377099\)
\(L(\frac12)\) \(\approx\) \(0.5438377099\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 1.19T + 3T^{2} \)
5 \( 1 + 1.56T + 5T^{2} \)
7 \( 1 - 3.07T + 7T^{2} \)
11 \( 1 + 5.47T + 11T^{2} \)
17 \( 1 + 2.12T + 17T^{2} \)
19 \( 1 + 7.34T + 19T^{2} \)
23 \( 1 + 3.59T + 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 - 6.67T + 31T^{2} \)
37 \( 1 - 6.12T + 37T^{2} \)
41 \( 1 + 4.12T + 41T^{2} \)
43 \( 1 + 0.673T + 43T^{2} \)
47 \( 1 + 0.525T + 47T^{2} \)
53 \( 1 - 1.56T + 53T^{2} \)
59 \( 1 + 10.2T + 59T^{2} \)
61 \( 1 - 5.24T + 61T^{2} \)
67 \( 1 + 4.94T + 67T^{2} \)
71 \( 1 - 7.34T + 71T^{2} \)
73 \( 1 - 16.6T + 73T^{2} \)
79 \( 1 - 15.7T + 79T^{2} \)
83 \( 1 + 8.54T + 83T^{2} \)
89 \( 1 - 1.68T + 89T^{2} \)
97 \( 1 + 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.111373452089270108178652994465, −7.74400365637831444202435678495, −6.64543373711675980821526381150, −5.96248438300879152999021046802, −5.18006601446849506787489692288, −4.65426028802467556753714853989, −3.91595699164119802455057400621, −2.66543677917204874676476810142, −1.96351248886836598003606993016, −0.38803538483078496095530353821, 0.38803538483078496095530353821, 1.96351248886836598003606993016, 2.66543677917204874676476810142, 3.91595699164119802455057400621, 4.65426028802467556753714853989, 5.18006601446849506787489692288, 5.96248438300879152999021046802, 6.64543373711675980821526381150, 7.74400365637831444202435678495, 8.111373452089270108178652994465

Graph of the $Z$-function along the critical line