Properties

Label 5408.2.a.bi
Level $5408$
Weight $2$
Character orbit 5408.a
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - \beta_{3} q^{5} + ( - \beta_{2} + \beta_1) q^{7} - \beta_{3} q^{9} + ( - \beta_{2} - \beta_1) q^{11} + ( - 2 \beta_{2} + \beta_1) q^{15} + ( - 2 \beta_{3} + 1) q^{17} + (\beta_{2} - 2 \beta_1) q^{19}+ \cdots + 2 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 2 q^{9} + 8 q^{17} + 10 q^{21} - 2 q^{25} - 20 q^{29} + 18 q^{33} + 8 q^{37} + 18 q^{45} + 18 q^{49} - 2 q^{53} - 6 q^{57} - 12 q^{61} + 42 q^{69} + 42 q^{73} - 26 q^{77} - 24 q^{81} + 38 q^{85}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.662153
2.13578
−2.13578
0.662153
0 −2.35829 0 2.56155 0 −3.68260 0 2.56155 0
1.2 0 −1.19935 0 −1.56155 0 3.07221 0 −1.56155 0
1.3 0 1.19935 0 −1.56155 0 −3.07221 0 −1.56155 0
1.4 0 2.35829 0 2.56155 0 3.68260 0 2.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.bi 4
4.b odd 2 1 inner 5408.2.a.bi 4
13.b even 2 1 5408.2.a.bh 4
13.e even 6 2 416.2.i.g 8
52.b odd 2 1 5408.2.a.bh 4
52.i odd 6 2 416.2.i.g 8
104.p odd 6 2 832.2.i.q 8
104.s even 6 2 832.2.i.q 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.i.g 8 13.e even 6 2
416.2.i.g 8 52.i odd 6 2
832.2.i.q 8 104.p odd 6 2
832.2.i.q 8 104.s even 6 2
5408.2.a.bh 4 13.b even 2 1
5408.2.a.bh 4 52.b odd 2 1
5408.2.a.bi 4 1.a even 1 1 trivial
5408.2.a.bi 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5408))\):

\( T_{3}^{4} - 7T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 23T_{7}^{2} + 128 \) Copy content Toggle raw display
\( T_{37}^{2} - 4T_{37} - 13 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 7T^{2} + 8 \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 23T^{2} + 128 \) Copy content Toggle raw display
$11$ \( T^{4} - 31T^{2} + 32 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 13)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 79T^{2} + 1352 \) Copy content Toggle raw display
$23$ \( T^{4} - 63T^{2} + 648 \) Copy content Toggle raw display
$29$ \( (T + 5)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 56T^{2} + 512 \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T - 13)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 17)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 71T^{2} + 32 \) Copy content Toggle raw display
$47$ \( T^{4} - 116T^{2} + 32 \) Copy content Toggle raw display
$53$ \( (T^{2} + T - 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 215 T^{2} + 11552 \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T - 59)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 119T^{2} + 2312 \) Copy content Toggle raw display
$71$ \( T^{4} - 79T^{2} + 1352 \) Copy content Toggle raw display
$73$ \( (T^{2} - 21 T + 72)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 380 T^{2} + 32768 \) Copy content Toggle raw display
$83$ \( T^{4} - 80T^{2} + 512 \) Copy content Toggle raw display
$89$ \( (T^{2} + 9 T - 18)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + T - 106)^{2} \) Copy content Toggle raw display
show more
show less