L(s) = 1 | + 8·5-s − 2·9-s − 12·17-s + 20·25-s + 12·29-s + 24·37-s + 8·41-s − 16·45-s − 6·49-s + 24·53-s + 12·61-s + 24·73-s − 3·81-s − 96·85-s + 16·89-s + 48·97-s + 36·101-s − 24·109-s − 36·113-s − 14·121-s − 40·125-s + 127-s + 131-s + 137-s + 139-s + 96·145-s + 149-s + ⋯ |
L(s) = 1 | + 3.57·5-s − 2/3·9-s − 2.91·17-s + 4·25-s + 2.22·29-s + 3.94·37-s + 1.24·41-s − 2.38·45-s − 6/7·49-s + 3.29·53-s + 1.53·61-s + 2.80·73-s − 1/3·81-s − 10.4·85-s + 1.69·89-s + 4.87·97-s + 3.58·101-s − 2.29·109-s − 3.38·113-s − 1.27·121-s − 3.57·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 7.97·145-s + 0.0819·149-s + ⋯ |
Λ(s)=(=((220⋅138)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅138)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅138
|
Sign: |
1
|
Analytic conductor: |
3.47740×106 |
Root analytic conductor: |
6.57138 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅138, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
15.69929075 |
L(21) |
≈ |
15.69929075 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | | 1 |
good | 3 | C22≀C2 | 1+2T2+7T4+2p2T6+p4T8 |
| 5 | C2 | (1−2T+pT2)4 |
| 7 | C22≀C2 | 1+6T2−T4+6p2T6+p4T8 |
| 11 | C22≀C2 | 1+14T2+183T4+14p2T6+p4T8 |
| 17 | D4 | (1+6T+31T2+6pT3+p2T4)2 |
| 19 | C22≀C2 | 1+54T2+1343T4+54p2T6+p4T8 |
| 23 | C22≀C2 | 1+10T2+975T4+10p2T6+p4T8 |
| 29 | C2 | (1−3T+pT2)4 |
| 31 | C22≀C2 | 1+36T2+518T4+36p2T6+p4T8 |
| 37 | C22 | (1−12T+107T2−12pT3+p2T4)2 |
| 41 | D4 | (1−4T+59T2−4pT3+p2T4)2 |
| 43 | C22≀C2 | 1+82T2+4407T4+82p2T6+p4T8 |
| 47 | C22≀C2 | 1−4T2+2694T4−4p2T6+p4T8 |
| 53 | D4 | (1−12T+130T2−12pT3+p2T4)2 |
| 59 | C22≀C2 | 1−10T2+6015T4−10p2T6+p4T8 |
| 61 | C2 | (1−3T+pT2)4 |
| 67 | C22≀C2 | 1+246T2+23999T4+246p2T6+p4T8 |
| 71 | C22≀C2 | 1+14T2+1383T4+14p2T6+p4T8 |
| 73 | C2 | (1−6T+pT2)4 |
| 79 | C22≀C2 | 1+196T2+20358T4+196p2T6+p4T8 |
| 83 | C22≀C2 | 1+212T2+23286T4+212p2T6+p4T8 |
| 89 | D4 | (1−8T+167T2−8pT3+p2T4)2 |
| 97 | D4 | (1−24T+335T2−24pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.94184664639347053353034240805, −5.61577237962366390032595437572, −5.33956919858318088365796375992, −5.28108712777309370804236854173, −5.12677623494920046051003888956, −4.79775757919956575384287121926, −4.75654032116821498723860616807, −4.37038169905296304757194008329, −4.26664682453302570013059360108, −4.04945311624170794286067242408, −3.90142523435735189921468561418, −3.58056082701344505131959704587, −3.41393134280874500600501082507, −2.77429132083988725189528469093, −2.74533127673538015364014662278, −2.55163948399715557602002178049, −2.48868376445881194554485907161, −2.27227925235580273776365267121, −2.05611678814104365367289862196, −1.85615978087165839844504469436, −1.80155011021054350362900125685, −1.21248115921947163502407719856, −0.893703462753866922575439030569, −0.70393521010110959464768181263, −0.46826868496538690293396876483,
0.46826868496538690293396876483, 0.70393521010110959464768181263, 0.893703462753866922575439030569, 1.21248115921947163502407719856, 1.80155011021054350362900125685, 1.85615978087165839844504469436, 2.05611678814104365367289862196, 2.27227925235580273776365267121, 2.48868376445881194554485907161, 2.55163948399715557602002178049, 2.74533127673538015364014662278, 2.77429132083988725189528469093, 3.41393134280874500600501082507, 3.58056082701344505131959704587, 3.90142523435735189921468561418, 4.04945311624170794286067242408, 4.26664682453302570013059360108, 4.37038169905296304757194008329, 4.75654032116821498723860616807, 4.79775757919956575384287121926, 5.12677623494920046051003888956, 5.28108712777309370804236854173, 5.33956919858318088365796375992, 5.61577237962366390032595437572, 5.94184664639347053353034240805