Properties

Label 5408.2.a.bk.1.1
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7488.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.698857\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.90931 q^{3} +2.00000 q^{5} +0.779548 q^{7} +5.46410 q^{9} -5.03908 q^{11} -5.81863 q^{15} -6.46410 q^{17} -0.779548 q^{19} -2.26795 q^{21} -7.16884 q^{23} -1.00000 q^{25} -7.16884 q^{27} +3.00000 q^{29} -1.55910 q^{31} +14.6603 q^{33} +1.55910 q^{35} +4.26795 q^{37} -3.19615 q^{41} +8.72794 q^{43} +10.9282 q^{45} -7.37772 q^{47} -6.39230 q^{49} +18.8061 q^{51} +9.46410 q^{53} -10.0782 q^{55} +2.26795 q^{57} +12.4168 q^{59} +3.00000 q^{61} +4.25953 q^{63} -0.779548 q^{67} +20.8564 q^{69} -15.1172 q^{71} +6.00000 q^{73} +2.90931 q^{75} -3.92820 q^{77} +10.0782 q^{79} +4.46410 q^{81} -10.0782 q^{83} -12.9282 q^{85} -8.72794 q^{87} +9.19615 q^{89} +4.53590 q^{93} -1.55910 q^{95} +10.2679 q^{97} -27.5340 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 8 q^{9} - 12 q^{17} - 16 q^{21} - 4 q^{25} + 12 q^{29} + 24 q^{33} + 24 q^{37} + 8 q^{41} + 16 q^{45} + 16 q^{49} + 24 q^{53} + 16 q^{57} + 12 q^{61} + 28 q^{69} + 24 q^{73} + 12 q^{77}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.90931 −1.67969 −0.839846 0.542824i \(-0.817355\pi\)
−0.839846 + 0.542824i \(0.817355\pi\)
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 0.779548 0.294641 0.147321 0.989089i \(-0.452935\pi\)
0.147321 + 0.989089i \(0.452935\pi\)
\(8\) 0 0
\(9\) 5.46410 1.82137
\(10\) 0 0
\(11\) −5.03908 −1.51934 −0.759670 0.650309i \(-0.774639\pi\)
−0.759670 + 0.650309i \(0.774639\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −5.81863 −1.50236
\(16\) 0 0
\(17\) −6.46410 −1.56777 −0.783887 0.620903i \(-0.786766\pi\)
−0.783887 + 0.620903i \(0.786766\pi\)
\(18\) 0 0
\(19\) −0.779548 −0.178841 −0.0894203 0.995994i \(-0.528501\pi\)
−0.0894203 + 0.995994i \(0.528501\pi\)
\(20\) 0 0
\(21\) −2.26795 −0.494907
\(22\) 0 0
\(23\) −7.16884 −1.49481 −0.747404 0.664370i \(-0.768700\pi\)
−0.747404 + 0.664370i \(0.768700\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −7.16884 −1.37964
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −1.55910 −0.280022 −0.140011 0.990150i \(-0.544714\pi\)
−0.140011 + 0.990150i \(0.544714\pi\)
\(32\) 0 0
\(33\) 14.6603 2.55202
\(34\) 0 0
\(35\) 1.55910 0.263535
\(36\) 0 0
\(37\) 4.26795 0.701647 0.350823 0.936442i \(-0.385902\pi\)
0.350823 + 0.936442i \(0.385902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.19615 −0.499155 −0.249578 0.968355i \(-0.580292\pi\)
−0.249578 + 0.968355i \(0.580292\pi\)
\(42\) 0 0
\(43\) 8.72794 1.33100 0.665499 0.746399i \(-0.268219\pi\)
0.665499 + 0.746399i \(0.268219\pi\)
\(44\) 0 0
\(45\) 10.9282 1.62908
\(46\) 0 0
\(47\) −7.37772 −1.07615 −0.538076 0.842897i \(-0.680849\pi\)
−0.538076 + 0.842897i \(0.680849\pi\)
\(48\) 0 0
\(49\) −6.39230 −0.913186
\(50\) 0 0
\(51\) 18.8061 2.63338
\(52\) 0 0
\(53\) 9.46410 1.29999 0.649997 0.759937i \(-0.274770\pi\)
0.649997 + 0.759937i \(0.274770\pi\)
\(54\) 0 0
\(55\) −10.0782 −1.35894
\(56\) 0 0
\(57\) 2.26795 0.300397
\(58\) 0 0
\(59\) 12.4168 1.61653 0.808265 0.588819i \(-0.200407\pi\)
0.808265 + 0.588819i \(0.200407\pi\)
\(60\) 0 0
\(61\) 3.00000 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(62\) 0 0
\(63\) 4.25953 0.536650
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.779548 −0.0952370 −0.0476185 0.998866i \(-0.515163\pi\)
−0.0476185 + 0.998866i \(0.515163\pi\)
\(68\) 0 0
\(69\) 20.8564 2.51082
\(70\) 0 0
\(71\) −15.1172 −1.79409 −0.897043 0.441944i \(-0.854289\pi\)
−0.897043 + 0.441944i \(0.854289\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 2.90931 0.335939
\(76\) 0 0
\(77\) −3.92820 −0.447660
\(78\) 0 0
\(79\) 10.0782 1.13388 0.566941 0.823759i \(-0.308127\pi\)
0.566941 + 0.823759i \(0.308127\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) −10.0782 −1.10622 −0.553111 0.833108i \(-0.686559\pi\)
−0.553111 + 0.833108i \(0.686559\pi\)
\(84\) 0 0
\(85\) −12.9282 −1.40226
\(86\) 0 0
\(87\) −8.72794 −0.935733
\(88\) 0 0
\(89\) 9.19615 0.974790 0.487395 0.873182i \(-0.337947\pi\)
0.487395 + 0.873182i \(0.337947\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.53590 0.470351
\(94\) 0 0
\(95\) −1.55910 −0.159960
\(96\) 0 0
\(97\) 10.2679 1.04255 0.521276 0.853388i \(-0.325456\pi\)
0.521276 + 0.853388i \(0.325456\pi\)
\(98\) 0 0
\(99\) −27.5340 −2.76727
\(100\) 0 0
\(101\) −1.39230 −0.138540 −0.0692698 0.997598i \(-0.522067\pi\)
−0.0692698 + 0.997598i \(0.522067\pi\)
\(102\) 0 0
\(103\) 20.1563 1.98606 0.993030 0.117860i \(-0.0376035\pi\)
0.993030 + 0.117860i \(0.0376035\pi\)
\(104\) 0 0
\(105\) −4.53590 −0.442658
\(106\) 0 0
\(107\) 8.72794 0.843762 0.421881 0.906651i \(-0.361370\pi\)
0.421881 + 0.906651i \(0.361370\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) −12.4168 −1.17855
\(112\) 0 0
\(113\) −5.53590 −0.520774 −0.260387 0.965504i \(-0.583850\pi\)
−0.260387 + 0.965504i \(0.583850\pi\)
\(114\) 0 0
\(115\) −14.3377 −1.33700
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.03908 −0.461932
\(120\) 0 0
\(121\) 14.3923 1.30839
\(122\) 0 0
\(123\) 9.29861 0.838427
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −8.72794 −0.774479 −0.387240 0.921979i \(-0.626571\pi\)
−0.387240 + 0.921979i \(0.626571\pi\)
\(128\) 0 0
\(129\) −25.3923 −2.23567
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −0.607695 −0.0526939
\(134\) 0 0
\(135\) −14.3377 −1.23399
\(136\) 0 0
\(137\) 2.80385 0.239549 0.119774 0.992801i \(-0.461783\pi\)
0.119774 + 0.992801i \(0.461783\pi\)
\(138\) 0 0
\(139\) 1.35022 0.114524 0.0572619 0.998359i \(-0.481763\pi\)
0.0572619 + 0.998359i \(0.481763\pi\)
\(140\) 0 0
\(141\) 21.4641 1.80760
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 18.5972 1.53387
\(148\) 0 0
\(149\) −19.5885 −1.60475 −0.802374 0.596821i \(-0.796430\pi\)
−0.802374 + 0.596821i \(0.796430\pi\)
\(150\) 0 0
\(151\) 1.55910 0.126877 0.0634387 0.997986i \(-0.479793\pi\)
0.0634387 + 0.997986i \(0.479793\pi\)
\(152\) 0 0
\(153\) −35.3205 −2.85549
\(154\) 0 0
\(155\) −3.11819 −0.250459
\(156\) 0 0
\(157\) −16.3923 −1.30825 −0.654124 0.756387i \(-0.726963\pi\)
−0.654124 + 0.756387i \(0.726963\pi\)
\(158\) 0 0
\(159\) −27.5340 −2.18359
\(160\) 0 0
\(161\) −5.58846 −0.440432
\(162\) 0 0
\(163\) 11.9990 0.939837 0.469919 0.882710i \(-0.344283\pi\)
0.469919 + 0.882710i \(0.344283\pi\)
\(164\) 0 0
\(165\) 29.3205 2.28260
\(166\) 0 0
\(167\) 17.8177 1.37877 0.689386 0.724394i \(-0.257880\pi\)
0.689386 + 0.724394i \(0.257880\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −4.25953 −0.325734
\(172\) 0 0
\(173\) 3.92820 0.298656 0.149328 0.988788i \(-0.452289\pi\)
0.149328 + 0.988788i \(0.452289\pi\)
\(174\) 0 0
\(175\) −0.779548 −0.0589283
\(176\) 0 0
\(177\) −36.1244 −2.71527
\(178\) 0 0
\(179\) −8.72794 −0.652357 −0.326178 0.945308i \(-0.605761\pi\)
−0.326178 + 0.945308i \(0.605761\pi\)
\(180\) 0 0
\(181\) −4.39230 −0.326477 −0.163239 0.986587i \(-0.552194\pi\)
−0.163239 + 0.986587i \(0.552194\pi\)
\(182\) 0 0
\(183\) −8.72794 −0.645188
\(184\) 0 0
\(185\) 8.53590 0.627572
\(186\) 0 0
\(187\) 32.5731 2.38198
\(188\) 0 0
\(189\) −5.58846 −0.406500
\(190\) 0 0
\(191\) −10.2870 −0.744344 −0.372172 0.928164i \(-0.621387\pi\)
−0.372172 + 0.928164i \(0.621387\pi\)
\(192\) 0 0
\(193\) 16.2679 1.17099 0.585496 0.810675i \(-0.300900\pi\)
0.585496 + 0.810675i \(0.300900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.58846 0.540655 0.270328 0.962768i \(-0.412868\pi\)
0.270328 + 0.962768i \(0.412868\pi\)
\(198\) 0 0
\(199\) −11.4284 −0.810136 −0.405068 0.914287i \(-0.632752\pi\)
−0.405068 + 0.914287i \(0.632752\pi\)
\(200\) 0 0
\(201\) 2.26795 0.159969
\(202\) 0 0
\(203\) 2.33864 0.164141
\(204\) 0 0
\(205\) −6.39230 −0.446458
\(206\) 0 0
\(207\) −39.1713 −2.72259
\(208\) 0 0
\(209\) 3.92820 0.271719
\(210\) 0 0
\(211\) 23.4834 1.61666 0.808331 0.588728i \(-0.200371\pi\)
0.808331 + 0.588728i \(0.200371\pi\)
\(212\) 0 0
\(213\) 43.9808 3.01351
\(214\) 0 0
\(215\) 17.4559 1.19048
\(216\) 0 0
\(217\) −1.21539 −0.0825061
\(218\) 0 0
\(219\) −17.4559 −1.17956
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.779548 −0.0522024 −0.0261012 0.999659i \(-0.508309\pi\)
−0.0261012 + 0.999659i \(0.508309\pi\)
\(224\) 0 0
\(225\) −5.46410 −0.364273
\(226\) 0 0
\(227\) 2.33864 0.155221 0.0776106 0.996984i \(-0.475271\pi\)
0.0776106 + 0.996984i \(0.475271\pi\)
\(228\) 0 0
\(229\) 12.9282 0.854320 0.427160 0.904176i \(-0.359514\pi\)
0.427160 + 0.904176i \(0.359514\pi\)
\(230\) 0 0
\(231\) 11.4284 0.751932
\(232\) 0 0
\(233\) 21.4641 1.40616 0.703080 0.711111i \(-0.251808\pi\)
0.703080 + 0.711111i \(0.251808\pi\)
\(234\) 0 0
\(235\) −14.7554 −0.962539
\(236\) 0 0
\(237\) −29.3205 −1.90457
\(238\) 0 0
\(239\) 10.0782 0.651902 0.325951 0.945387i \(-0.394316\pi\)
0.325951 + 0.945387i \(0.394316\pi\)
\(240\) 0 0
\(241\) 9.58846 0.617647 0.308823 0.951119i \(-0.400065\pi\)
0.308823 + 0.951119i \(0.400065\pi\)
\(242\) 0 0
\(243\) 8.51906 0.546498
\(244\) 0 0
\(245\) −12.7846 −0.816779
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 29.3205 1.85811
\(250\) 0 0
\(251\) −19.9474 −1.25907 −0.629535 0.776972i \(-0.716755\pi\)
−0.629535 + 0.776972i \(0.716755\pi\)
\(252\) 0 0
\(253\) 36.1244 2.27112
\(254\) 0 0
\(255\) 37.6122 2.35537
\(256\) 0 0
\(257\) −6.46410 −0.403220 −0.201610 0.979466i \(-0.564617\pi\)
−0.201610 + 0.979466i \(0.564617\pi\)
\(258\) 0 0
\(259\) 3.32707 0.206734
\(260\) 0 0
\(261\) 16.3923 1.01466
\(262\) 0 0
\(263\) 4.05065 0.249774 0.124887 0.992171i \(-0.460143\pi\)
0.124887 + 0.992171i \(0.460143\pi\)
\(264\) 0 0
\(265\) 18.9282 1.16275
\(266\) 0 0
\(267\) −26.7545 −1.63735
\(268\) 0 0
\(269\) 25.3923 1.54820 0.774098 0.633066i \(-0.218204\pi\)
0.774098 + 0.633066i \(0.218204\pi\)
\(270\) 0 0
\(271\) 3.89774 0.236771 0.118385 0.992968i \(-0.462228\pi\)
0.118385 + 0.992968i \(0.462228\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.03908 0.303868
\(276\) 0 0
\(277\) −17.3923 −1.04500 −0.522501 0.852639i \(-0.675001\pi\)
−0.522501 + 0.852639i \(0.675001\pi\)
\(278\) 0 0
\(279\) −8.51906 −0.510023
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 6.02751 0.358298 0.179149 0.983822i \(-0.442666\pi\)
0.179149 + 0.983822i \(0.442666\pi\)
\(284\) 0 0
\(285\) 4.53590 0.268683
\(286\) 0 0
\(287\) −2.49155 −0.147072
\(288\) 0 0
\(289\) 24.7846 1.45792
\(290\) 0 0
\(291\) −29.8727 −1.75117
\(292\) 0 0
\(293\) 14.8038 0.864850 0.432425 0.901670i \(-0.357658\pi\)
0.432425 + 0.901670i \(0.357658\pi\)
\(294\) 0 0
\(295\) 24.8336 1.44587
\(296\) 0 0
\(297\) 36.1244 2.09615
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.80385 0.392167
\(302\) 0 0
\(303\) 4.05065 0.232704
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 33.3527 1.90354 0.951768 0.306817i \(-0.0992641\pi\)
0.951768 + 0.306817i \(0.0992641\pi\)
\(308\) 0 0
\(309\) −58.6410 −3.33597
\(310\) 0 0
\(311\) 3.11819 0.176816 0.0884082 0.996084i \(-0.471822\pi\)
0.0884082 + 0.996084i \(0.471822\pi\)
\(312\) 0 0
\(313\) 12.3923 0.700454 0.350227 0.936665i \(-0.386104\pi\)
0.350227 + 0.936665i \(0.386104\pi\)
\(314\) 0 0
\(315\) 8.51906 0.479995
\(316\) 0 0
\(317\) 4.00000 0.224662 0.112331 0.993671i \(-0.464168\pi\)
0.112331 + 0.993671i \(0.464168\pi\)
\(318\) 0 0
\(319\) −15.1172 −0.846403
\(320\) 0 0
\(321\) −25.3923 −1.41726
\(322\) 0 0
\(323\) 5.03908 0.280382
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 17.4559 0.965312
\(328\) 0 0
\(329\) −5.75129 −0.317079
\(330\) 0 0
\(331\) 16.6763 0.916614 0.458307 0.888794i \(-0.348456\pi\)
0.458307 + 0.888794i \(0.348456\pi\)
\(332\) 0 0
\(333\) 23.3205 1.27796
\(334\) 0 0
\(335\) −1.55910 −0.0851825
\(336\) 0 0
\(337\) −20.3923 −1.11084 −0.555420 0.831570i \(-0.687442\pi\)
−0.555420 + 0.831570i \(0.687442\pi\)
\(338\) 0 0
\(339\) 16.1057 0.874739
\(340\) 0 0
\(341\) 7.85641 0.425448
\(342\) 0 0
\(343\) −10.4399 −0.563704
\(344\) 0 0
\(345\) 41.7128 2.24574
\(346\) 0 0
\(347\) −5.60975 −0.301147 −0.150573 0.988599i \(-0.548112\pi\)
−0.150573 + 0.988599i \(0.548112\pi\)
\(348\) 0 0
\(349\) −21.5885 −1.15560 −0.577802 0.816177i \(-0.696089\pi\)
−0.577802 + 0.816177i \(0.696089\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.19615 −0.0636648 −0.0318324 0.999493i \(-0.510134\pi\)
−0.0318324 + 0.999493i \(0.510134\pi\)
\(354\) 0 0
\(355\) −30.2345 −1.60468
\(356\) 0 0
\(357\) 14.6603 0.775903
\(358\) 0 0
\(359\) 10.0782 0.531905 0.265952 0.963986i \(-0.414314\pi\)
0.265952 + 0.963986i \(0.414314\pi\)
\(360\) 0 0
\(361\) −18.3923 −0.968016
\(362\) 0 0
\(363\) −41.8717 −2.19770
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 18.8061 0.981670 0.490835 0.871253i \(-0.336692\pi\)
0.490835 + 0.871253i \(0.336692\pi\)
\(368\) 0 0
\(369\) −17.4641 −0.909145
\(370\) 0 0
\(371\) 7.37772 0.383032
\(372\) 0 0
\(373\) −11.3923 −0.589871 −0.294936 0.955517i \(-0.595298\pi\)
−0.294936 + 0.955517i \(0.595298\pi\)
\(374\) 0 0
\(375\) 34.9118 1.80284
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.6763 0.856606 0.428303 0.903635i \(-0.359112\pi\)
0.428303 + 0.903635i \(0.359112\pi\)
\(380\) 0 0
\(381\) 25.3923 1.30089
\(382\) 0 0
\(383\) 27.8958 1.42541 0.712705 0.701464i \(-0.247470\pi\)
0.712705 + 0.701464i \(0.247470\pi\)
\(384\) 0 0
\(385\) −7.85641 −0.400400
\(386\) 0 0
\(387\) 47.6903 2.42424
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 46.3401 2.34352
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.1563 1.01417
\(396\) 0 0
\(397\) −13.0526 −0.655089 −0.327545 0.944836i \(-0.606221\pi\)
−0.327545 + 0.944836i \(0.606221\pi\)
\(398\) 0 0
\(399\) 1.76798 0.0885095
\(400\) 0 0
\(401\) 15.9808 0.798041 0.399021 0.916942i \(-0.369350\pi\)
0.399021 + 0.916942i \(0.369350\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 8.92820 0.443646
\(406\) 0 0
\(407\) −21.5065 −1.06604
\(408\) 0 0
\(409\) −16.5167 −0.816696 −0.408348 0.912826i \(-0.633895\pi\)
−0.408348 + 0.912826i \(0.633895\pi\)
\(410\) 0 0
\(411\) −8.15727 −0.402368
\(412\) 0 0
\(413\) 9.67949 0.476297
\(414\) 0 0
\(415\) −20.1563 −0.989434
\(416\) 0 0
\(417\) −3.92820 −0.192365
\(418\) 0 0
\(419\) 4.05065 0.197887 0.0989436 0.995093i \(-0.468454\pi\)
0.0989436 + 0.995093i \(0.468454\pi\)
\(420\) 0 0
\(421\) 12.9282 0.630082 0.315041 0.949078i \(-0.397982\pi\)
0.315041 + 0.949078i \(0.397982\pi\)
\(422\) 0 0
\(423\) −40.3126 −1.96007
\(424\) 0 0
\(425\) 6.46410 0.313555
\(426\) 0 0
\(427\) 2.33864 0.113175
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.7945 0.953469 0.476734 0.879047i \(-0.341820\pi\)
0.476734 + 0.879047i \(0.341820\pi\)
\(432\) 0 0
\(433\) 7.39230 0.355251 0.177626 0.984098i \(-0.443158\pi\)
0.177626 + 0.984098i \(0.443158\pi\)
\(434\) 0 0
\(435\) −17.4559 −0.836945
\(436\) 0 0
\(437\) 5.58846 0.267332
\(438\) 0 0
\(439\) 6.02751 0.287677 0.143839 0.989601i \(-0.454055\pi\)
0.143839 + 0.989601i \(0.454055\pi\)
\(440\) 0 0
\(441\) −34.9282 −1.66325
\(442\) 0 0
\(443\) 25.5572 1.21426 0.607129 0.794603i \(-0.292321\pi\)
0.607129 + 0.794603i \(0.292321\pi\)
\(444\) 0 0
\(445\) 18.3923 0.871879
\(446\) 0 0
\(447\) 56.9890 2.69548
\(448\) 0 0
\(449\) −6.41154 −0.302579 −0.151290 0.988489i \(-0.548343\pi\)
−0.151290 + 0.988489i \(0.548343\pi\)
\(450\) 0 0
\(451\) 16.1057 0.758386
\(452\) 0 0
\(453\) −4.53590 −0.213115
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.124356 −0.00581711 −0.00290856 0.999996i \(-0.500926\pi\)
−0.00290856 + 0.999996i \(0.500926\pi\)
\(458\) 0 0
\(459\) 46.3401 2.16297
\(460\) 0 0
\(461\) 7.19615 0.335158 0.167579 0.985859i \(-0.446405\pi\)
0.167579 + 0.985859i \(0.446405\pi\)
\(462\) 0 0
\(463\) −27.1163 −1.26020 −0.630100 0.776514i \(-0.716986\pi\)
−0.630100 + 0.776514i \(0.716986\pi\)
\(464\) 0 0
\(465\) 9.07180 0.420695
\(466\) 0 0
\(467\) 1.55910 0.0721464 0.0360732 0.999349i \(-0.488515\pi\)
0.0360732 + 0.999349i \(0.488515\pi\)
\(468\) 0 0
\(469\) −0.607695 −0.0280608
\(470\) 0 0
\(471\) 47.6903 2.19746
\(472\) 0 0
\(473\) −43.9808 −2.02224
\(474\) 0 0
\(475\) 0.779548 0.0357681
\(476\) 0 0
\(477\) 51.7128 2.36777
\(478\) 0 0
\(479\) −25.1954 −1.15121 −0.575603 0.817729i \(-0.695233\pi\)
−0.575603 + 0.817729i \(0.695233\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 16.2586 0.739791
\(484\) 0 0
\(485\) 20.5359 0.932487
\(486\) 0 0
\(487\) 16.6763 0.755677 0.377838 0.925872i \(-0.376668\pi\)
0.377838 + 0.925872i \(0.376668\pi\)
\(488\) 0 0
\(489\) −34.9090 −1.57864
\(490\) 0 0
\(491\) −10.2870 −0.464247 −0.232124 0.972686i \(-0.574567\pi\)
−0.232124 + 0.972686i \(0.574567\pi\)
\(492\) 0 0
\(493\) −19.3923 −0.873385
\(494\) 0 0
\(495\) −55.0681 −2.47513
\(496\) 0 0
\(497\) −11.7846 −0.528612
\(498\) 0 0
\(499\) −1.55910 −0.0697947 −0.0348974 0.999391i \(-0.511110\pi\)
−0.0348974 + 0.999391i \(0.511110\pi\)
\(500\) 0 0
\(501\) −51.8372 −2.31591
\(502\) 0 0
\(503\) −13.4052 −0.597710 −0.298855 0.954299i \(-0.596605\pi\)
−0.298855 + 0.954299i \(0.596605\pi\)
\(504\) 0 0
\(505\) −2.78461 −0.123914
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.8038 0.744817 0.372409 0.928069i \(-0.378532\pi\)
0.372409 + 0.928069i \(0.378532\pi\)
\(510\) 0 0
\(511\) 4.67729 0.206911
\(512\) 0 0
\(513\) 5.58846 0.246736
\(514\) 0 0
\(515\) 40.3126 1.77639
\(516\) 0 0
\(517\) 37.1769 1.63504
\(518\) 0 0
\(519\) −11.4284 −0.501650
\(520\) 0 0
\(521\) −42.2487 −1.85095 −0.925475 0.378809i \(-0.876334\pi\)
−0.925475 + 0.378809i \(0.876334\pi\)
\(522\) 0 0
\(523\) −36.2620 −1.58563 −0.792813 0.609465i \(-0.791384\pi\)
−0.792813 + 0.609465i \(0.791384\pi\)
\(524\) 0 0
\(525\) 2.26795 0.0989814
\(526\) 0 0
\(527\) 10.0782 0.439011
\(528\) 0 0
\(529\) 28.3923 1.23445
\(530\) 0 0
\(531\) 67.8467 2.94429
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 17.4559 0.754683
\(536\) 0 0
\(537\) 25.3923 1.09576
\(538\) 0 0
\(539\) 32.2113 1.38744
\(540\) 0 0
\(541\) 6.92820 0.297867 0.148933 0.988847i \(-0.452416\pi\)
0.148933 + 0.988847i \(0.452416\pi\)
\(542\) 0 0
\(543\) 12.7786 0.548382
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −20.1563 −0.861822 −0.430911 0.902395i \(-0.641808\pi\)
−0.430911 + 0.902395i \(0.641808\pi\)
\(548\) 0 0
\(549\) 16.3923 0.699607
\(550\) 0 0
\(551\) −2.33864 −0.0996296
\(552\) 0 0
\(553\) 7.85641 0.334088
\(554\) 0 0
\(555\) −24.8336 −1.05413
\(556\) 0 0
\(557\) 33.1962 1.40657 0.703283 0.710910i \(-0.251717\pi\)
0.703283 + 0.710910i \(0.251717\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −94.7654 −4.00100
\(562\) 0 0
\(563\) −30.8611 −1.30064 −0.650320 0.759660i \(-0.725365\pi\)
−0.650320 + 0.759660i \(0.725365\pi\)
\(564\) 0 0
\(565\) −11.0718 −0.465794
\(566\) 0 0
\(567\) 3.47998 0.146145
\(568\) 0 0
\(569\) 3.92820 0.164679 0.0823394 0.996604i \(-0.473761\pi\)
0.0823394 + 0.996604i \(0.473761\pi\)
\(570\) 0 0
\(571\) −14.7554 −0.617496 −0.308748 0.951144i \(-0.599910\pi\)
−0.308748 + 0.951144i \(0.599910\pi\)
\(572\) 0 0
\(573\) 29.9282 1.25027
\(574\) 0 0
\(575\) 7.16884 0.298961
\(576\) 0 0
\(577\) 16.1436 0.672067 0.336033 0.941850i \(-0.390915\pi\)
0.336033 + 0.941850i \(0.390915\pi\)
\(578\) 0 0
\(579\) −47.3286 −1.96691
\(580\) 0 0
\(581\) −7.85641 −0.325939
\(582\) 0 0
\(583\) −47.6903 −1.97513
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.8177 −0.735414 −0.367707 0.929942i \(-0.619857\pi\)
−0.367707 + 0.929942i \(0.619857\pi\)
\(588\) 0 0
\(589\) 1.21539 0.0500793
\(590\) 0 0
\(591\) −22.0772 −0.908135
\(592\) 0 0
\(593\) 18.7846 0.771391 0.385696 0.922626i \(-0.373961\pi\)
0.385696 + 0.922626i \(0.373961\pi\)
\(594\) 0 0
\(595\) −10.0782 −0.413164
\(596\) 0 0
\(597\) 33.2487 1.36078
\(598\) 0 0
\(599\) 30.2345 1.23535 0.617673 0.786435i \(-0.288075\pi\)
0.617673 + 0.786435i \(0.288075\pi\)
\(600\) 0 0
\(601\) −15.3923 −0.627865 −0.313933 0.949445i \(-0.601647\pi\)
−0.313933 + 0.949445i \(0.601647\pi\)
\(602\) 0 0
\(603\) −4.25953 −0.173461
\(604\) 0 0
\(605\) 28.7846 1.17026
\(606\) 0 0
\(607\) −28.8842 −1.17238 −0.586188 0.810175i \(-0.699372\pi\)
−0.586188 + 0.810175i \(0.699372\pi\)
\(608\) 0 0
\(609\) −6.80385 −0.275706
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.1962 −0.452208 −0.226104 0.974103i \(-0.572599\pi\)
−0.226104 + 0.974103i \(0.572599\pi\)
\(614\) 0 0
\(615\) 18.5972 0.749912
\(616\) 0 0
\(617\) −19.5885 −0.788602 −0.394301 0.918981i \(-0.629013\pi\)
−0.394301 + 0.918981i \(0.629013\pi\)
\(618\) 0 0
\(619\) 1.55910 0.0626654 0.0313327 0.999509i \(-0.490025\pi\)
0.0313327 + 0.999509i \(0.490025\pi\)
\(620\) 0 0
\(621\) 51.3923 2.06230
\(622\) 0 0
\(623\) 7.16884 0.287214
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −11.4284 −0.456405
\(628\) 0 0
\(629\) −27.5885 −1.10002
\(630\) 0 0
\(631\) 43.7926 1.74336 0.871678 0.490079i \(-0.163032\pi\)
0.871678 + 0.490079i \(0.163032\pi\)
\(632\) 0 0
\(633\) −68.3205 −2.71550
\(634\) 0 0
\(635\) −17.4559 −0.692715
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −82.6021 −3.26769
\(640\) 0 0
\(641\) −1.39230 −0.0549927 −0.0274964 0.999622i \(-0.508753\pi\)
−0.0274964 + 0.999622i \(0.508753\pi\)
\(642\) 0 0
\(643\) −21.3536 −0.842104 −0.421052 0.907036i \(-0.638339\pi\)
−0.421052 + 0.907036i \(0.638339\pi\)
\(644\) 0 0
\(645\) −50.7846 −1.99964
\(646\) 0 0
\(647\) 26.1838 1.02939 0.514696 0.857373i \(-0.327905\pi\)
0.514696 + 0.857373i \(0.327905\pi\)
\(648\) 0 0
\(649\) −62.5692 −2.45606
\(650\) 0 0
\(651\) 3.53595 0.138585
\(652\) 0 0
\(653\) −33.2487 −1.30112 −0.650561 0.759454i \(-0.725466\pi\)
−0.650561 + 0.759454i \(0.725466\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32.7846 1.27905
\(658\) 0 0
\(659\) 23.0656 0.898509 0.449255 0.893404i \(-0.351690\pi\)
0.449255 + 0.893404i \(0.351690\pi\)
\(660\) 0 0
\(661\) 25.0526 0.974432 0.487216 0.873282i \(-0.338013\pi\)
0.487216 + 0.873282i \(0.338013\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.21539 −0.0471308
\(666\) 0 0
\(667\) −21.5065 −0.832736
\(668\) 0 0
\(669\) 2.26795 0.0876840
\(670\) 0 0
\(671\) −15.1172 −0.583594
\(672\) 0 0
\(673\) 17.7846 0.685546 0.342773 0.939418i \(-0.388634\pi\)
0.342773 + 0.939418i \(0.388634\pi\)
\(674\) 0 0
\(675\) 7.16884 0.275929
\(676\) 0 0
\(677\) 2.53590 0.0974625 0.0487312 0.998812i \(-0.484482\pi\)
0.0487312 + 0.998812i \(0.484482\pi\)
\(678\) 0 0
\(679\) 8.00436 0.307179
\(680\) 0 0
\(681\) −6.80385 −0.260724
\(682\) 0 0
\(683\) 12.4168 0.475116 0.237558 0.971373i \(-0.423653\pi\)
0.237558 + 0.971373i \(0.423653\pi\)
\(684\) 0 0
\(685\) 5.60770 0.214259
\(686\) 0 0
\(687\) −37.6122 −1.43499
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 22.9127 0.871641 0.435820 0.900034i \(-0.356458\pi\)
0.435820 + 0.900034i \(0.356458\pi\)
\(692\) 0 0
\(693\) −21.4641 −0.815354
\(694\) 0 0
\(695\) 2.70043 0.102433
\(696\) 0 0
\(697\) 20.6603 0.782563
\(698\) 0 0
\(699\) −62.4458 −2.36192
\(700\) 0 0
\(701\) 44.1051 1.66583 0.832914 0.553403i \(-0.186671\pi\)
0.832914 + 0.553403i \(0.186671\pi\)
\(702\) 0 0
\(703\) −3.32707 −0.125483
\(704\) 0 0
\(705\) 42.9282 1.61677
\(706\) 0 0
\(707\) −1.08537 −0.0408195
\(708\) 0 0
\(709\) −38.9090 −1.46126 −0.730628 0.682775i \(-0.760773\pi\)
−0.730628 + 0.682775i \(0.760773\pi\)
\(710\) 0 0
\(711\) 55.0681 2.06521
\(712\) 0 0
\(713\) 11.1769 0.418579
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −29.3205 −1.09499
\(718\) 0 0
\(719\) 10.2870 0.383642 0.191821 0.981430i \(-0.438561\pi\)
0.191821 + 0.981430i \(0.438561\pi\)
\(720\) 0 0
\(721\) 15.7128 0.585176
\(722\) 0 0
\(723\) −27.8958 −1.03746
\(724\) 0 0
\(725\) −3.00000 −0.111417
\(726\) 0 0
\(727\) 40.3126 1.49511 0.747556 0.664199i \(-0.231227\pi\)
0.747556 + 0.664199i \(0.231227\pi\)
\(728\) 0 0
\(729\) −38.1769 −1.41396
\(730\) 0 0
\(731\) −56.4183 −2.08671
\(732\) 0 0
\(733\) 39.7128 1.46683 0.733413 0.679783i \(-0.237926\pi\)
0.733413 + 0.679783i \(0.237926\pi\)
\(734\) 0 0
\(735\) 37.1944 1.37194
\(736\) 0 0
\(737\) 3.92820 0.144697
\(738\) 0 0
\(739\) 26.3367 0.968812 0.484406 0.874843i \(-0.339036\pi\)
0.484406 + 0.874843i \(0.339036\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.5963 1.12247 0.561234 0.827657i \(-0.310327\pi\)
0.561234 + 0.827657i \(0.310327\pi\)
\(744\) 0 0
\(745\) −39.1769 −1.43533
\(746\) 0 0
\(747\) −55.0681 −2.01484
\(748\) 0 0
\(749\) 6.80385 0.248607
\(750\) 0 0
\(751\) −18.8061 −0.686244 −0.343122 0.939291i \(-0.611484\pi\)
−0.343122 + 0.939291i \(0.611484\pi\)
\(752\) 0 0
\(753\) 58.0333 2.11485
\(754\) 0 0
\(755\) 3.11819 0.113483
\(756\) 0 0
\(757\) −43.3923 −1.57712 −0.788560 0.614958i \(-0.789173\pi\)
−0.788560 + 0.614958i \(0.789173\pi\)
\(758\) 0 0
\(759\) −105.097 −3.81478
\(760\) 0 0
\(761\) −7.19615 −0.260860 −0.130430 0.991457i \(-0.541636\pi\)
−0.130430 + 0.991457i \(0.541636\pi\)
\(762\) 0 0
\(763\) −4.67729 −0.169329
\(764\) 0 0
\(765\) −70.6410 −2.55403
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 17.8756 0.644612 0.322306 0.946636i \(-0.395542\pi\)
0.322306 + 0.946636i \(0.395542\pi\)
\(770\) 0 0
\(771\) 18.8061 0.677285
\(772\) 0 0
\(773\) 27.1962 0.978178 0.489089 0.872234i \(-0.337329\pi\)
0.489089 + 0.872234i \(0.337329\pi\)
\(774\) 0 0
\(775\) 1.55910 0.0560044
\(776\) 0 0
\(777\) −9.67949 −0.347250
\(778\) 0 0
\(779\) 2.49155 0.0892692
\(780\) 0 0
\(781\) 76.1769 2.72582
\(782\) 0 0
\(783\) −21.5065 −0.768581
\(784\) 0 0
\(785\) −32.7846 −1.17013
\(786\) 0 0
\(787\) 53.1472 1.89449 0.947246 0.320507i \(-0.103853\pi\)
0.947246 + 0.320507i \(0.103853\pi\)
\(788\) 0 0
\(789\) −11.7846 −0.419543
\(790\) 0 0
\(791\) −4.31550 −0.153441
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −55.0681 −1.95306
\(796\) 0 0
\(797\) 24.7128 0.875373 0.437686 0.899128i \(-0.355798\pi\)
0.437686 + 0.899128i \(0.355798\pi\)
\(798\) 0 0
\(799\) 47.6903 1.68716
\(800\) 0 0
\(801\) 50.2487 1.77545
\(802\) 0 0
\(803\) −30.2345 −1.06695
\(804\) 0 0
\(805\) −11.1769 −0.393934
\(806\) 0 0
\(807\) −73.8742 −2.60049
\(808\) 0 0
\(809\) −24.4641 −0.860112 −0.430056 0.902802i \(-0.641506\pi\)
−0.430056 + 0.902802i \(0.641506\pi\)
\(810\) 0 0
\(811\) −19.0150 −0.667706 −0.333853 0.942625i \(-0.608349\pi\)
−0.333853 + 0.942625i \(0.608349\pi\)
\(812\) 0 0
\(813\) −11.3397 −0.397702
\(814\) 0 0
\(815\) 23.9981 0.840616
\(816\) 0 0
\(817\) −6.80385 −0.238036
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.3731 0.990227 0.495113 0.868828i \(-0.335126\pi\)
0.495113 + 0.868828i \(0.335126\pi\)
\(822\) 0 0
\(823\) −20.7829 −0.724448 −0.362224 0.932091i \(-0.617982\pi\)
−0.362224 + 0.932091i \(0.617982\pi\)
\(824\) 0 0
\(825\) −14.6603 −0.510405
\(826\) 0 0
\(827\) 4.67729 0.162645 0.0813226 0.996688i \(-0.474086\pi\)
0.0813226 + 0.996688i \(0.474086\pi\)
\(828\) 0 0
\(829\) 38.5692 1.33956 0.669782 0.742558i \(-0.266387\pi\)
0.669782 + 0.742558i \(0.266387\pi\)
\(830\) 0 0
\(831\) 50.5997 1.75528
\(832\) 0 0
\(833\) 41.3205 1.43167
\(834\) 0 0
\(835\) 35.6353 1.23321
\(836\) 0 0
\(837\) 11.1769 0.386331
\(838\) 0 0
\(839\) −19.7945 −0.683383 −0.341691 0.939812i \(-0.611000\pi\)
−0.341691 + 0.939812i \(0.611000\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 29.0931 1.00202
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.2195 0.385506
\(848\) 0 0
\(849\) −17.5359 −0.601830
\(850\) 0 0
\(851\) −30.5963 −1.04883
\(852\) 0 0
\(853\) 48.9282 1.67527 0.837635 0.546231i \(-0.183938\pi\)
0.837635 + 0.546231i \(0.183938\pi\)
\(854\) 0 0
\(855\) −8.51906 −0.291346
\(856\) 0 0
\(857\) 51.0333 1.74327 0.871633 0.490160i \(-0.163062\pi\)
0.871633 + 0.490160i \(0.163062\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 7.24871 0.247035
\(862\) 0 0
\(863\) 30.2345 1.02919 0.514597 0.857432i \(-0.327942\pi\)
0.514597 + 0.857432i \(0.327942\pi\)
\(864\) 0 0
\(865\) 7.85641 0.267126
\(866\) 0 0
\(867\) −72.1062 −2.44885
\(868\) 0 0
\(869\) −50.7846 −1.72275
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 56.1051 1.89887
\(874\) 0 0
\(875\) −9.35458 −0.316242
\(876\) 0 0
\(877\) −51.5885 −1.74202 −0.871009 0.491267i \(-0.836534\pi\)
−0.871009 + 0.491267i \(0.836534\pi\)
\(878\) 0 0
\(879\) −43.0690 −1.45268
\(880\) 0 0
\(881\) −44.3205 −1.49320 −0.746598 0.665276i \(-0.768314\pi\)
−0.746598 + 0.665276i \(0.768314\pi\)
\(882\) 0 0
\(883\) 25.5572 0.860068 0.430034 0.902813i \(-0.358502\pi\)
0.430034 + 0.902813i \(0.358502\pi\)
\(884\) 0 0
\(885\) −72.2487 −2.42861
\(886\) 0 0
\(887\) 14.9643 0.502453 0.251226 0.967928i \(-0.419166\pi\)
0.251226 + 0.967928i \(0.419166\pi\)
\(888\) 0 0
\(889\) −6.80385 −0.228194
\(890\) 0 0
\(891\) −22.4950 −0.753609
\(892\) 0 0
\(893\) 5.75129 0.192460
\(894\) 0 0
\(895\) −17.4559 −0.583486
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.67729 −0.155996
\(900\) 0 0
\(901\) −61.1769 −2.03810
\(902\) 0 0
\(903\) −19.7945 −0.658720
\(904\) 0 0
\(905\) −8.78461 −0.292010
\(906\) 0 0
\(907\) −3.32707 −0.110474 −0.0552368 0.998473i \(-0.517591\pi\)
−0.0552368 + 0.998473i \(0.517591\pi\)
\(908\) 0 0
\(909\) −7.60770 −0.252331
\(910\) 0 0
\(911\) −6.23638 −0.206621 −0.103310 0.994649i \(-0.532943\pi\)
−0.103310 + 0.994649i \(0.532943\pi\)
\(912\) 0 0
\(913\) 50.7846 1.68073
\(914\) 0 0
\(915\) −17.4559 −0.577074
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −18.8061 −0.620356 −0.310178 0.950679i \(-0.600389\pi\)
−0.310178 + 0.950679i \(0.600389\pi\)
\(920\) 0 0
\(921\) −97.0333 −3.19736
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −4.26795 −0.140329
\(926\) 0 0
\(927\) 110.136 3.61735
\(928\) 0 0
\(929\) −37.5885 −1.23324 −0.616619 0.787262i \(-0.711498\pi\)
−0.616619 + 0.787262i \(0.711498\pi\)
\(930\) 0 0
\(931\) 4.98311 0.163315
\(932\) 0 0
\(933\) −9.07180 −0.296997
\(934\) 0 0
\(935\) 65.1462 2.13051
\(936\) 0 0
\(937\) 25.1769 0.822494 0.411247 0.911524i \(-0.365093\pi\)
0.411247 + 0.911524i \(0.365093\pi\)
\(938\) 0 0
\(939\) −36.0531 −1.17655
\(940\) 0 0
\(941\) 4.78461 0.155974 0.0779869 0.996954i \(-0.475151\pi\)
0.0779869 + 0.996954i \(0.475151\pi\)
\(942\) 0 0
\(943\) 22.9127 0.746141
\(944\) 0 0
\(945\) −11.1769 −0.363585
\(946\) 0 0
\(947\) −10.4399 −0.339253 −0.169626 0.985508i \(-0.554256\pi\)
−0.169626 + 0.985508i \(0.554256\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −11.6373 −0.377364
\(952\) 0 0
\(953\) −54.7128 −1.77232 −0.886161 0.463378i \(-0.846637\pi\)
−0.886161 + 0.463378i \(0.846637\pi\)
\(954\) 0 0
\(955\) −20.5741 −0.665761
\(956\) 0 0
\(957\) 43.9808 1.42170
\(958\) 0 0
\(959\) 2.18573 0.0705810
\(960\) 0 0
\(961\) −28.5692 −0.921588
\(962\) 0 0
\(963\) 47.6903 1.53680
\(964\) 0 0
\(965\) 32.5359 1.04737
\(966\) 0 0
\(967\) 62.0280 1.99469 0.997343 0.0728422i \(-0.0232070\pi\)
0.997343 + 0.0728422i \(0.0232070\pi\)
\(968\) 0 0
\(969\) −14.6603 −0.470955
\(970\) 0 0
\(971\) −2.49155 −0.0799578 −0.0399789 0.999201i \(-0.512729\pi\)
−0.0399789 + 0.999201i \(0.512729\pi\)
\(972\) 0 0
\(973\) 1.05256 0.0337435
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.19615 −0.294211 −0.147105 0.989121i \(-0.546996\pi\)
−0.147105 + 0.989121i \(0.546996\pi\)
\(978\) 0 0
\(979\) −46.3401 −1.48104
\(980\) 0 0
\(981\) −32.7846 −1.04673
\(982\) 0 0
\(983\) −44.9899 −1.43496 −0.717478 0.696582i \(-0.754703\pi\)
−0.717478 + 0.696582i \(0.754703\pi\)
\(984\) 0 0
\(985\) 15.1769 0.483577
\(986\) 0 0
\(987\) 16.7323 0.532595
\(988\) 0 0
\(989\) −62.5692 −1.98959
\(990\) 0 0
\(991\) −40.9393 −1.30048 −0.650239 0.759730i \(-0.725331\pi\)
−0.650239 + 0.759730i \(0.725331\pi\)
\(992\) 0 0
\(993\) −48.5167 −1.53963
\(994\) 0 0
\(995\) −22.8567 −0.724608
\(996\) 0 0
\(997\) −29.0000 −0.918439 −0.459220 0.888323i \(-0.651871\pi\)
−0.459220 + 0.888323i \(0.651871\pi\)
\(998\) 0 0
\(999\) −30.5963 −0.968023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bk.1.1 4
4.3 odd 2 inner 5408.2.a.bk.1.4 4
13.2 odd 12 416.2.w.c.225.4 yes 8
13.7 odd 12 416.2.w.c.257.4 yes 8
13.12 even 2 5408.2.a.bg.1.1 4
52.7 even 12 416.2.w.c.257.1 yes 8
52.15 even 12 416.2.w.c.225.1 8
52.51 odd 2 5408.2.a.bg.1.4 4
104.59 even 12 832.2.w.h.257.4 8
104.67 even 12 832.2.w.h.641.4 8
104.85 odd 12 832.2.w.h.257.1 8
104.93 odd 12 832.2.w.h.641.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.c.225.1 8 52.15 even 12
416.2.w.c.225.4 yes 8 13.2 odd 12
416.2.w.c.257.1 yes 8 52.7 even 12
416.2.w.c.257.4 yes 8 13.7 odd 12
832.2.w.h.257.1 8 104.85 odd 12
832.2.w.h.257.4 8 104.59 even 12
832.2.w.h.641.1 8 104.93 odd 12
832.2.w.h.641.4 8 104.67 even 12
5408.2.a.bg.1.1 4 13.12 even 2
5408.2.a.bg.1.4 4 52.51 odd 2
5408.2.a.bk.1.1 4 1.1 even 1 trivial
5408.2.a.bk.1.4 4 4.3 odd 2 inner