L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 + 1.5i)3-s + (0.499 − 0.866i)4-s + 3.46·5-s + (−1.5 − 0.866i)6-s + (0.5 + 2.59i)7-s + 0.999i·8-s + (−1.5 + 2.59i)9-s + (−2.99 + 1.73i)10-s + 1.73·12-s + (−3.5 + 0.866i)13-s + (−1.73 − 2i)14-s + (2.99 + 5.19i)15-s + (−0.5 − 0.866i)16-s + (0.866 − 1.5i)17-s − 3i·18-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.499 + 0.866i)3-s + (0.249 − 0.433i)4-s + 1.54·5-s + (−0.612 − 0.353i)6-s + (0.188 + 0.981i)7-s + 0.353i·8-s + (−0.5 + 0.866i)9-s + (−0.948 + 0.547i)10-s + 0.499·12-s + (−0.970 + 0.240i)13-s + (−0.462 − 0.534i)14-s + (0.774 + 1.34i)15-s + (−0.125 − 0.216i)16-s + (0.210 − 0.363i)17-s − 0.707i·18-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(−0.176−0.984i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(−0.176−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
−0.176−0.984i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(419,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), −0.176−0.984i)
|
Particular Values
L(1) |
≈ |
1.01963+1.21857i |
L(21) |
≈ |
1.01963+1.21857i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(−0.866−1.5i)T |
| 7 | 1+(−0.5−2.59i)T |
| 13 | 1+(3.5−0.866i)T |
good | 5 | 1−3.46T+5T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 17 | 1+(−0.866+1.5i)T+(−8.5−14.7i)T2 |
| 19 | 1+(9.5+16.4i)T2 |
| 23 | 1+(−2.59+1.5i)T+(11.5−19.9i)T2 |
| 29 | 1+(−5.19+3i)T+(14.5−25.1i)T2 |
| 31 | 1−1.73iT−31T2 |
| 37 | 1+(2+3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.46+6i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.5−0.866i)T+(−21.5−37.2i)T2 |
| 47 | 1−3.46T+47T2 |
| 53 | 1−9iT−53T2 |
| 59 | 1+(0.866−1.5i)T+(−29.5−51.0i)T2 |
| 61 | 1+(10.5+6.06i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.5−6.06i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−12.9−7.5i)T+(35.5+61.4i)T2 |
| 73 | 1+13.8iT−73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1−12.1T+83T2 |
| 89 | 1+(7.79+13.5i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−15−8.66i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54507736664622873519811484186, −10.00157847266662845951578550339, −9.166137375182227261810257608064, −8.857629340978120614309195844748, −7.63965228160706084731862686178, −6.38556416898730539464868350404, −5.46333828162002753260487604304, −4.80520563034396675712180874344, −2.81006683163026639849991467091, −2.02662889901884554633845681718,
1.14280338685557149337617833506, 2.16583274808885723291888675758, 3.26784755989072678240482359509, 4.99813462552597712918966364300, 6.29280873905890804867195163966, 7.03171658278538309707453315981, 7.913404351317510659836037220826, 8.858820249398102415042936491161, 9.800556338728787068138559852898, 10.23334184676300509473401872580