Properties

Label 546.2.bq.a
Level $546$
Weight $2$
Character orbit 546.bq
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,2,Mod(419,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.419");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + (2 \zeta_{12}^{3} - \zeta_{12}) q^{3} + \zeta_{12}^{2} q^{4} + (2 \zeta_{12}^{3} - 4 \zeta_{12}) q^{5} + (\zeta_{12}^{2} - 2) q^{6} + ( - 3 \zeta_{12}^{2} + 2) q^{7} + \zeta_{12}^{3} q^{8}+ \cdots + ( - 3 \zeta_{12}^{3} - 5 \zeta_{12}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 6 q^{6} + 2 q^{7} - 6 q^{9} - 12 q^{10} - 14 q^{13} + 12 q^{15} - 2 q^{16} - 6 q^{24} + 28 q^{25} + 10 q^{28} + 6 q^{36} - 8 q^{37} + 6 q^{42} - 2 q^{43} - 6 q^{46} - 26 q^{49} + 12 q^{51}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
419.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0.866025 + 1.50000i 0.500000 0.866025i 3.46410 −1.50000 0.866025i 0.500000 + 2.59808i 1.00000i −1.50000 + 2.59808i −3.00000 + 1.73205i
419.2 0.866025 0.500000i −0.866025 1.50000i 0.500000 0.866025i −3.46410 −1.50000 0.866025i 0.500000 + 2.59808i 1.00000i −1.50000 + 2.59808i −3.00000 + 1.73205i
503.1 −0.866025 0.500000i 0.866025 1.50000i 0.500000 + 0.866025i 3.46410 −1.50000 + 0.866025i 0.500000 2.59808i 1.00000i −1.50000 2.59808i −3.00000 1.73205i
503.2 0.866025 + 0.500000i −0.866025 + 1.50000i 0.500000 + 0.866025i −3.46410 −1.50000 + 0.866025i 0.500000 2.59808i 1.00000i −1.50000 2.59808i −3.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
91.n odd 6 1 inner
273.bn even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.bq.a 4
3.b odd 2 1 inner 546.2.bq.a 4
7.b odd 2 1 546.2.bq.b yes 4
13.c even 3 1 546.2.bq.b yes 4
21.c even 2 1 546.2.bq.b yes 4
39.i odd 6 1 546.2.bq.b yes 4
91.n odd 6 1 inner 546.2.bq.a 4
273.bn even 6 1 inner 546.2.bq.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.bq.a 4 1.a even 1 1 trivial
546.2.bq.a 4 3.b odd 2 1 inner
546.2.bq.a 4 91.n odd 6 1 inner
546.2.bq.a 4 273.bn even 6 1 inner
546.2.bq.b yes 4 7.b odd 2 1
546.2.bq.b yes 4 13.c even 3 1
546.2.bq.b yes 4 21.c even 2 1
546.2.bq.b yes 4 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} - 12 \) Copy content Toggle raw display
\( T_{61}^{2} + 21T_{61} + 147 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$29$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$31$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$43$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( (T^{2} + 21 T + 147)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 225 T^{2} + 50625 \) Copy content Toggle raw display
$73$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$79$ \( (T + 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 147)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 243 T^{2} + 59049 \) Copy content Toggle raw display
$97$ \( (T^{2} - 30 T + 300)^{2} \) Copy content Toggle raw display
show more
show less