L(s) = 1 | − 2·3-s + 4-s + 9-s − 2·12-s + 6·17-s + 12·19-s + 8·23-s − 4·25-s + 2·27-s − 16·29-s + 36-s − 24·37-s − 24·41-s + 2·43-s + 49-s − 12·51-s − 40·53-s − 24·57-s + 6·59-s − 64-s + 18·67-s + 6·68-s − 16·69-s + 24·71-s + 8·75-s + 12·76-s − 24·79-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s + 1/3·9-s − 0.577·12-s + 1.45·17-s + 2.75·19-s + 1.66·23-s − 4/5·25-s + 0.384·27-s − 2.97·29-s + 1/6·36-s − 3.94·37-s − 3.74·41-s + 0.304·43-s + 1/7·49-s − 1.68·51-s − 5.49·53-s − 3.17·57-s + 0.781·59-s − 1/8·64-s + 2.19·67-s + 0.727·68-s − 1.92·69-s + 2.84·71-s + 0.923·75-s + 1.37·76-s − 2.70·79-s + ⋯ |
Λ(s)=(=((24⋅34⋅74⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅34⋅74⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅74⋅134
|
Sign: |
1
|
Analytic conductor: |
361.309 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅74⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7215346244 |
L(21) |
≈ |
0.7215346244 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1−T2+T4 |
| 3 | C2 | (1+T+T2)2 |
| 7 | C22 | 1−T2+T4 |
| 13 | C22 | 1−T2+p2T4 |
good | 5 | C22 | (1+2T2+p2T4)2 |
| 11 | C23 | 1+6T2−85T4+6p2T6+p4T8 |
| 17 | D4×C2 | 1−6T+5T2+18T3+60T4+18pT5+5p2T6−6p3T7+p4T8 |
| 19 | D4×C2 | 1−12T+82T2−408T3+1707T4−408pT5+82p2T6−12p3T7+p4T8 |
| 23 | D4×C2 | 1−8T+5T2−104T3+1480T4−104pT5+5p2T6−8p3T7+p4T8 |
| 29 | C22 | (1+8T+35T2+8pT3+p2T4)2 |
| 31 | D4×C2 | 1−82T2+3171T4−82p2T6+p4T8 |
| 37 | D4×C2 | 1+24T+310T2+2832T3+19659T4+2832pT5+310p2T6+24p3T7+p4T8 |
| 41 | C22 | (1+12T+89T2+12pT3+p2T4)2 |
| 43 | D4×C2 | 1−2T−71T2+22T3+3604T4+22pT5−71p2T6−2p3T7+p4T8 |
| 47 | D4×C2 | 1−132T2+8006T4−132p2T6+p4T8 |
| 53 | D4 | (1+20T+203T2+20pT3+p2T4)2 |
| 59 | D4×C2 | 1−6T+69T2−342T3+476T4−342pT5+69p2T6−6p3T7+p4T8 |
| 61 | C23 | 1−95T2+5304T4−95p2T6+p4T8 |
| 67 | D4×C2 | 1−18T+265T2−2826T3+27396T4−2826pT5+265p2T6−18p3T7+p4T8 |
| 71 | D4×C2 | 1−24T+357T2−3960T3+35816T4−3960pT5+357p2T6−24p3T7+p4T8 |
| 73 | D4×C2 | 1−164T2+14310T4−164p2T6+p4T8 |
| 79 | D4 | (1+12T+182T2+12pT3+p2T4)2 |
| 83 | C22 | (1−163T2+p2T4)2 |
| 89 | D4×C2 | 1+6T+93T2+486T3−292T4+486pT5+93p2T6+6p3T7+p4T8 |
| 97 | D4×C2 | 1−36T+730T2−10728T3+121299T4−10728pT5+730p2T6−36p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.69142391746753347386998246056, −7.56608541158320025189730485218, −7.09334399883042678238062887757, −6.93224731100799593607005033012, −6.91557202736186785793798584034, −6.89939411990615936289009071744, −6.29043475376490839500308371656, −5.95253303556012599295410803858, −5.89574126155553846202212122519, −5.34705187045503085558831304047, −5.33227071454830488358601285270, −5.26073625750644198636961068661, −4.95476999836256925769902203774, −4.88049162606403145839739213054, −4.31654837945409076956688125335, −3.61383730384312203796128503229, −3.58100304210979593434574221023, −3.40070455090560381716613569849, −3.14827916740683880830491384810, −3.04019460697396748757509041738, −2.07883979412458789837696819307, −1.90383509974229487257351589042, −1.45735749955846818859094979571, −1.26226376673888705563999383917, −0.29548496073519443075110509941,
0.29548496073519443075110509941, 1.26226376673888705563999383917, 1.45735749955846818859094979571, 1.90383509974229487257351589042, 2.07883979412458789837696819307, 3.04019460697396748757509041738, 3.14827916740683880830491384810, 3.40070455090560381716613569849, 3.58100304210979593434574221023, 3.61383730384312203796128503229, 4.31654837945409076956688125335, 4.88049162606403145839739213054, 4.95476999836256925769902203774, 5.26073625750644198636961068661, 5.33227071454830488358601285270, 5.34705187045503085558831304047, 5.89574126155553846202212122519, 5.95253303556012599295410803858, 6.29043475376490839500308371656, 6.89939411990615936289009071744, 6.91557202736186785793798584034, 6.93224731100799593607005033012, 7.09334399883042678238062887757, 7.56608541158320025189730485218, 7.69142391746753347386998246056