Properties

Label 546.2.s.c
Level $546$
Weight $2$
Character orbit 546.s
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,2,Mod(43,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + (\zeta_{12}^{2} - 1) q^{3} + \zeta_{12}^{2} q^{4} + ( - 4 \zeta_{12}^{2} + 2) q^{5} + (\zeta_{12}^{3} - \zeta_{12}) q^{6} + (\zeta_{12}^{3} - \zeta_{12}) q^{7} + \zeta_{12}^{3} q^{8}+ \cdots - 4 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} - 2 q^{9} - 4 q^{12} - 4 q^{14} + 12 q^{15} - 2 q^{16} + 6 q^{17} + 12 q^{19} + 12 q^{20} + 8 q^{22} + 8 q^{23} - 28 q^{25} + 14 q^{26} + 4 q^{27} - 16 q^{29} + 2 q^{36} - 24 q^{37}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 3.46410i 0.866025 0.500000i 0.866025 0.500000i 1.00000i −0.500000 0.866025i −1.73205 + 3.00000i
43.2 0.866025 + 0.500000i −0.500000 + 0.866025i 0.500000 + 0.866025i 3.46410i −0.866025 + 0.500000i −0.866025 + 0.500000i 1.00000i −0.500000 0.866025i 1.73205 3.00000i
127.1 −0.866025 + 0.500000i −0.500000 0.866025i 0.500000 0.866025i 3.46410i 0.866025 + 0.500000i 0.866025 + 0.500000i 1.00000i −0.500000 + 0.866025i −1.73205 3.00000i
127.2 0.866025 0.500000i −0.500000 0.866025i 0.500000 0.866025i 3.46410i −0.866025 0.500000i −0.866025 0.500000i 1.00000i −0.500000 + 0.866025i 1.73205 + 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.s.c 4
3.b odd 2 1 1638.2.bj.e 4
13.e even 6 1 inner 546.2.s.c 4
13.f odd 12 1 7098.2.a.bn 2
13.f odd 12 1 7098.2.a.bz 2
39.h odd 6 1 1638.2.bj.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.s.c 4 1.a even 1 1 trivial
546.2.s.c 4 13.e even 6 1 inner
1638.2.bj.e 4 3.b odd 2 1
1638.2.bj.e 4 39.h odd 6 1
7098.2.a.bn 2 13.f odd 12 1
7098.2.a.bz 2 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{11}^{4} - 16T_{11}^{2} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$29$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{4} + 24 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$41$ \( (T^{2} + 12 T + 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} + 20 T + 97)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 3721 \) Copy content Toggle raw display
$61$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$67$ \( T^{4} - 18 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$71$ \( T^{4} - 24 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$73$ \( T^{4} + 128T^{2} + 1024 \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 6 T^{3} + \cdots + 9409 \) Copy content Toggle raw display
$97$ \( T^{4} - 36 T^{3} + \cdots + 10816 \) Copy content Toggle raw display
show more
show less