L(s) = 1 | + (1.57 − 0.512i)2-s + (2.41 + 1.75i)3-s + (−1.01 + 0.737i)4-s + (0.690 − 2.12i)5-s + (4.70 + 1.52i)6-s + (−1.31 − 1.80i)7-s + (−5.11 + 7.04i)8-s + (−0.0320 − 0.0986i)9-s − 3.70i·10-s + (−0.949 − 10.9i)11-s − 3.74·12-s + (−1.75 + 0.568i)13-s + (−2.98 − 2.17i)14-s + (5.39 − 3.92i)15-s + (−2.90 + 8.94i)16-s + (7.97 + 2.59i)17-s + ⋯ |
L(s) = 1 | + (0.787 − 0.256i)2-s + (0.804 + 0.584i)3-s + (−0.253 + 0.184i)4-s + (0.138 − 0.425i)5-s + (0.783 + 0.254i)6-s + (−0.187 − 0.257i)7-s + (−0.639 + 0.880i)8-s + (−0.00356 − 0.0109i)9-s − 0.370i·10-s + (−0.0862 − 0.996i)11-s − 0.311·12-s + (−0.134 + 0.0437i)13-s + (−0.213 − 0.155i)14-s + (0.359 − 0.261i)15-s + (−0.181 + 0.559i)16-s + (0.469 + 0.152i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.994−0.108i)Λ(3−s)
Λ(s)=(=(55s/2ΓC(s+1)L(s)(0.994−0.108i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.994−0.108i
|
Analytic conductor: |
1.49864 |
Root analytic conductor: |
1.22419 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(6,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1), 0.994−0.108i)
|
Particular Values
L(23) |
≈ |
1.79124+0.0971539i |
L(21) |
≈ |
1.79124+0.0971539i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.690+2.12i)T |
| 11 | 1+(0.949+10.9i)T |
good | 2 | 1+(−1.57+0.512i)T+(3.23−2.35i)T2 |
| 3 | 1+(−2.41−1.75i)T+(2.78+8.55i)T2 |
| 7 | 1+(1.31+1.80i)T+(−15.1+46.6i)T2 |
| 13 | 1+(1.75−0.568i)T+(136.−99.3i)T2 |
| 17 | 1+(−7.97−2.59i)T+(233.+169.i)T2 |
| 19 | 1+(15.6−21.4i)T+(−111.−343.i)T2 |
| 23 | 1+7.63T+529T2 |
| 29 | 1+(−31.8−43.7i)T+(−259.+799.i)T2 |
| 31 | 1+(−1.08−3.32i)T+(−777.+564.i)T2 |
| 37 | 1+(−37.8+27.5i)T+(423.−1.30e3i)T2 |
| 41 | 1+(15.9−21.9i)T+(−519.−1.59e3i)T2 |
| 43 | 1+14.9iT−1.84e3T2 |
| 47 | 1+(−58.0−42.1i)T+(682.+2.10e3i)T2 |
| 53 | 1+(12.1+37.4i)T+(−2.27e3+1.65e3i)T2 |
| 59 | 1+(29.1−21.1i)T+(1.07e3−3.31e3i)T2 |
| 61 | 1+(44.0+14.3i)T+(3.01e3+2.18e3i)T2 |
| 67 | 1+60.8T+4.48e3T2 |
| 71 | 1+(37.8−116.i)T+(−4.07e3−2.96e3i)T2 |
| 73 | 1+(35.1+48.3i)T+(−1.64e3+5.06e3i)T2 |
| 79 | 1+(81.5−26.4i)T+(5.04e3−3.66e3i)T2 |
| 83 | 1+(43.6+14.1i)T+(5.57e3+4.04e3i)T2 |
| 89 | 1−121.T+7.92e3T2 |
| 97 | 1+(10.2+31.6i)T+(−7.61e3+5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.61666715793757846189910194431, −14.10254890169820880273709418083, −12.97397489144528228532130332024, −11.99582292172056680324244034249, −10.38832094637274933134460001664, −9.016529936706516464057414141705, −8.213706890221770812603474180236, −5.87139879498671209113791105452, −4.26180830324559000391711888376, −3.14510052694506305719347208199,
2.64499136994518620688621738412, 4.58803548678198688954053132490, 6.25408955639800966496593171888, 7.53966781056248200707067952511, 9.043871941501991432257292568294, 10.23936504750582545333141117332, 12.10466849685415887816061351272, 13.17570266475333087106819317574, 13.86917624051539787446674601829, 14.86651484620473640732395204098