Properties

Label 55.3.i.c.6.3
Level $55$
Weight $3$
Character 55.6
Analytic conductor $1.499$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 6 x^{10} + 5 x^{9} - 30 x^{8} + 88 x^{7} - 131 x^{6} - 12 x^{5} + 240 x^{4} + \cdots + 1331 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 6.3
Root \(1.54329 - 0.0151731i\) of defining polynomial
Character \(\chi\) \(=\) 55.6
Dual form 55.3.i.c.46.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.57580 - 0.512008i) q^{2} +(2.41303 + 1.75317i) q^{3} +(-1.01508 + 0.737497i) q^{4} +(0.690983 - 2.12663i) q^{5} +(4.70008 + 1.52715i) q^{6} +(-1.31003 - 1.80310i) q^{7} +(-5.11754 + 7.04369i) q^{8} +(-0.0320482 - 0.0986342i) q^{9} -3.70493i q^{10} +(-0.949049 - 10.9590i) q^{11} -3.74236 q^{12} +(-1.75040 + 0.568738i) q^{13} +(-2.98754 - 2.17058i) q^{14} +(5.39569 - 3.92020i) q^{15} +(-2.90689 + 8.94649i) q^{16} +(7.97437 + 2.59103i) q^{17} +(-0.101003 - 0.139019i) q^{18} +(-15.6197 + 21.4986i) q^{19} +(0.866979 + 2.66829i) q^{20} -6.64762i q^{21} +(-7.10660 - 16.7832i) q^{22} -7.63236 q^{23} +(-24.6975 + 8.02472i) q^{24} +(-4.04508 - 2.93893i) q^{25} +(-2.46707 + 1.79243i) q^{26} +(8.39084 - 25.8243i) q^{27} +(2.65956 + 0.864143i) q^{28} +(31.8005 + 43.7696i) q^{29} +(6.49535 - 8.94009i) q^{30} +(1.08129 + 3.32786i) q^{31} -19.2397i q^{32} +(16.9228 - 28.1082i) q^{33} +13.8926 q^{34} +(-4.73973 + 1.54003i) q^{35} +(0.105274 + 0.0764859i) q^{36} +(37.8881 - 27.5273i) q^{37} +(-13.6060 + 41.8749i) q^{38} +(-5.22085 - 1.69636i) q^{39} +(11.4432 + 15.7502i) q^{40} +(-15.9749 + 21.9876i) q^{41} +(-3.40364 - 10.4753i) q^{42} -14.9713i q^{43} +(9.04557 + 10.4243i) q^{44} -0.231903 q^{45} +(-12.0271 + 3.90783i) q^{46} +(58.0480 + 42.1743i) q^{47} +(-22.6991 + 16.4919i) q^{48} +(13.6068 - 41.8775i) q^{49} +(-7.87900 - 2.56004i) q^{50} +(14.6999 + 20.2326i) q^{51} +(1.35734 - 1.86822i) q^{52} +(-12.1774 - 37.4781i) q^{53} -44.9902i q^{54} +(-23.9614 - 5.55420i) q^{55} +19.4046 q^{56} +(-75.3814 + 24.4929i) q^{57} +(72.5216 + 52.6900i) q^{58} +(-29.1317 + 21.1654i) q^{59} +(-2.58591 + 7.95861i) q^{60} +(-44.0546 - 14.3142i) q^{61} +(3.40779 + 4.69042i) q^{62} +(-0.135863 + 0.187000i) q^{63} +(-21.4785 - 66.1039i) q^{64} +4.11543i q^{65} +(12.2754 - 52.9574i) q^{66} -60.8461 q^{67} +(-10.0055 + 3.25097i) q^{68} +(-18.4171 - 13.3808i) q^{69} +(-6.68035 + 4.85356i) q^{70} +(-37.8919 + 116.619i) q^{71} +(0.858757 + 0.279027i) q^{72} +(-35.1241 - 48.3441i) q^{73} +(45.6098 - 62.7765i) q^{74} +(-4.60847 - 14.1834i) q^{75} -33.3422i q^{76} +(-18.5169 + 16.0678i) q^{77} -9.09555 q^{78} +(-81.5552 + 26.4989i) q^{79} +(17.0172 + 12.3638i) q^{80} +(64.7665 - 47.0556i) q^{81} +(-13.9155 + 42.8274i) q^{82} +(-43.6902 - 14.1958i) q^{83} +(4.90260 + 6.74785i) q^{84} +(11.0203 - 15.1681i) q^{85} +(-7.66545 - 23.5918i) q^{86} +161.369i q^{87} +(82.0485 + 49.3983i) q^{88} +121.940 q^{89} +(-0.365432 + 0.118736i) q^{90} +(3.31856 + 2.41107i) q^{91} +(7.74743 - 5.62884i) q^{92} +(-3.22512 + 9.92591i) q^{93} +(113.066 + 36.7372i) q^{94} +(34.9266 + 48.0724i) q^{95} +(33.7304 - 46.4259i) q^{96} +(-10.2685 - 31.6031i) q^{97} -72.9574i q^{98} +(-1.05051 + 0.444824i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 5 q^{2} + 7 q^{3} + 13 q^{4} + 15 q^{5} - 15 q^{6} - 40 q^{7} - 15 q^{8} - 16 q^{9} - 8 q^{11} + 68 q^{12} - 15 q^{13} - 5 q^{14} + 35 q^{15} + 77 q^{16} - 5 q^{17} - 115 q^{18} + 15 q^{19} - 20 q^{20}+ \cdots + 509 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57580 0.512008i 0.787900 0.256004i 0.112690 0.993630i \(-0.464053\pi\)
0.675209 + 0.737626i \(0.264053\pi\)
\(3\) 2.41303 + 1.75317i 0.804342 + 0.584389i 0.912185 0.409779i \(-0.134394\pi\)
−0.107843 + 0.994168i \(0.534394\pi\)
\(4\) −1.01508 + 0.737497i −0.253769 + 0.184374i
\(5\) 0.690983 2.12663i 0.138197 0.425325i
\(6\) 4.70008 + 1.52715i 0.783347 + 0.254525i
\(7\) −1.31003 1.80310i −0.187147 0.257586i 0.705126 0.709082i \(-0.250890\pi\)
−0.892273 + 0.451496i \(0.850890\pi\)
\(8\) −5.11754 + 7.04369i −0.639693 + 0.880462i
\(9\) −0.0320482 0.0986342i −0.00356091 0.0109594i
\(10\) 3.70493i 0.370493i
\(11\) −0.949049 10.9590i −0.0862772 0.996271i
\(12\) −3.74236 −0.311864
\(13\) −1.75040 + 0.568738i −0.134646 + 0.0437491i −0.375565 0.926796i \(-0.622551\pi\)
0.240919 + 0.970545i \(0.422551\pi\)
\(14\) −2.98754 2.17058i −0.213396 0.155041i
\(15\) 5.39569 3.92020i 0.359713 0.261347i
\(16\) −2.90689 + 8.94649i −0.181681 + 0.559156i
\(17\) 7.97437 + 2.59103i 0.469080 + 0.152413i 0.534013 0.845476i \(-0.320683\pi\)
−0.0649328 + 0.997890i \(0.520683\pi\)
\(18\) −0.101003 0.139019i −0.00561128 0.00772326i
\(19\) −15.6197 + 21.4986i −0.822088 + 1.13151i 0.167257 + 0.985913i \(0.446509\pi\)
−0.989344 + 0.145594i \(0.953491\pi\)
\(20\) 0.866979 + 2.66829i 0.0433490 + 0.133414i
\(21\) 6.64762i 0.316553i
\(22\) −7.10660 16.7832i −0.323027 0.762874i
\(23\) −7.63236 −0.331842 −0.165921 0.986139i \(-0.553060\pi\)
−0.165921 + 0.986139i \(0.553060\pi\)
\(24\) −24.6975 + 8.02472i −1.02906 + 0.334363i
\(25\) −4.04508 2.93893i −0.161803 0.117557i
\(26\) −2.46707 + 1.79243i −0.0948875 + 0.0689398i
\(27\) 8.39084 25.8243i 0.310772 0.956457i
\(28\) 2.65956 + 0.864143i 0.0949842 + 0.0308623i
\(29\) 31.8005 + 43.7696i 1.09657 + 1.50930i 0.839856 + 0.542809i \(0.182639\pi\)
0.256713 + 0.966488i \(0.417361\pi\)
\(30\) 6.49535 8.94009i 0.216512 0.298003i
\(31\) 1.08129 + 3.32786i 0.0348803 + 0.107350i 0.966981 0.254849i \(-0.0820258\pi\)
−0.932101 + 0.362200i \(0.882026\pi\)
\(32\) 19.2397i 0.601241i
\(33\) 16.9228 28.1082i 0.512813 0.851762i
\(34\) 13.8926 0.408607
\(35\) −4.73973 + 1.54003i −0.135421 + 0.0440009i
\(36\) 0.105274 + 0.0764859i 0.00292427 + 0.00212461i
\(37\) 37.8881 27.5273i 1.02400 0.743981i 0.0569023 0.998380i \(-0.481878\pi\)
0.967099 + 0.254399i \(0.0818776\pi\)
\(38\) −13.6060 + 41.8749i −0.358052 + 1.10197i
\(39\) −5.22085 1.69636i −0.133868 0.0434963i
\(40\) 11.4432 + 15.7502i 0.286079 + 0.393754i
\(41\) −15.9749 + 21.9876i −0.389633 + 0.536283i −0.958104 0.286419i \(-0.907535\pi\)
0.568472 + 0.822703i \(0.307535\pi\)
\(42\) −3.40364 10.4753i −0.0810390 0.249412i
\(43\) 14.9713i 0.348171i −0.984731 0.174085i \(-0.944303\pi\)
0.984731 0.174085i \(-0.0556969\pi\)
\(44\) 9.04557 + 10.4243i 0.205581 + 0.236916i
\(45\) −0.231903 −0.00515340
\(46\) −12.0271 + 3.90783i −0.261458 + 0.0849528i
\(47\) 58.0480 + 42.1743i 1.23506 + 0.897326i 0.997259 0.0739873i \(-0.0235724\pi\)
0.237804 + 0.971313i \(0.423572\pi\)
\(48\) −22.6991 + 16.4919i −0.472898 + 0.343580i
\(49\) 13.6068 41.8775i 0.277691 0.854644i
\(50\) −7.87900 2.56004i −0.157580 0.0512008i
\(51\) 14.6999 + 20.2326i 0.288232 + 0.396718i
\(52\) 1.35734 1.86822i 0.0261028 0.0359274i
\(53\) −12.1774 37.4781i −0.229762 0.707134i −0.997773 0.0666977i \(-0.978754\pi\)
0.768012 0.640436i \(-0.221246\pi\)
\(54\) 44.9902i 0.833151i
\(55\) −23.9614 5.55420i −0.435663 0.100985i
\(56\) 19.4046 0.346511
\(57\) −75.3814 + 24.4929i −1.32248 + 0.429700i
\(58\) 72.5216 + 52.6900i 1.25037 + 0.908449i
\(59\) −29.1317 + 21.1654i −0.493758 + 0.358736i −0.806628 0.591060i \(-0.798710\pi\)
0.312870 + 0.949796i \(0.398710\pi\)
\(60\) −2.58591 + 7.95861i −0.0430985 + 0.132643i
\(61\) −44.0546 14.3142i −0.722207 0.234659i −0.0752273 0.997166i \(-0.523968\pi\)
−0.646980 + 0.762507i \(0.723968\pi\)
\(62\) 3.40779 + 4.69042i 0.0549643 + 0.0756519i
\(63\) −0.135863 + 0.187000i −0.00215656 + 0.00296825i
\(64\) −21.4785 66.1039i −0.335601 1.03287i
\(65\) 4.11543i 0.0633143i
\(66\) 12.2754 52.9574i 0.185991 0.802386i
\(67\) −60.8461 −0.908151 −0.454075 0.890963i \(-0.650030\pi\)
−0.454075 + 0.890963i \(0.650030\pi\)
\(68\) −10.0055 + 3.25097i −0.147139 + 0.0478084i
\(69\) −18.4171 13.3808i −0.266914 0.193925i
\(70\) −6.68035 + 4.85356i −0.0954336 + 0.0693365i
\(71\) −37.8919 + 116.619i −0.533688 + 1.64252i 0.212778 + 0.977101i \(0.431749\pi\)
−0.746466 + 0.665423i \(0.768251\pi\)
\(72\) 0.858757 + 0.279027i 0.0119272 + 0.00387538i
\(73\) −35.1241 48.3441i −0.481152 0.662248i 0.497574 0.867422i \(-0.334224\pi\)
−0.978726 + 0.205173i \(0.934224\pi\)
\(74\) 45.6098 62.7765i 0.616348 0.848331i
\(75\) −4.60847 14.1834i −0.0614463 0.189112i
\(76\) 33.3422i 0.438713i
\(77\) −18.5169 + 16.0678i −0.240479 + 0.208673i
\(78\) −9.09555 −0.116610
\(79\) −81.5552 + 26.4989i −1.03234 + 0.335429i −0.775717 0.631081i \(-0.782611\pi\)
−0.256627 + 0.966510i \(0.582611\pi\)
\(80\) 17.0172 + 12.3638i 0.212716 + 0.154547i
\(81\) 64.7665 47.0556i 0.799587 0.580934i
\(82\) −13.9155 + 42.8274i −0.169701 + 0.522285i
\(83\) −43.6902 14.1958i −0.526388 0.171034i 0.0337544 0.999430i \(-0.489254\pi\)
−0.560142 + 0.828396i \(0.689254\pi\)
\(84\) 4.90260 + 6.74785i 0.0583643 + 0.0803315i
\(85\) 11.0203 15.1681i 0.129651 0.178449i
\(86\) −7.66545 23.5918i −0.0891331 0.274324i
\(87\) 161.369i 1.85481i
\(88\) 82.0485 + 49.3983i 0.932370 + 0.561344i
\(89\) 121.940 1.37011 0.685056 0.728490i \(-0.259778\pi\)
0.685056 + 0.728490i \(0.259778\pi\)
\(90\) −0.365432 + 0.118736i −0.00406036 + 0.00131929i
\(91\) 3.31856 + 2.41107i 0.0364677 + 0.0264953i
\(92\) 7.74743 5.62884i 0.0842112 0.0611830i
\(93\) −3.22512 + 9.92591i −0.0346787 + 0.106730i
\(94\) 113.066 + 36.7372i 1.20282 + 0.390822i
\(95\) 34.9266 + 48.0724i 0.367649 + 0.506025i
\(96\) 33.7304 46.4259i 0.351358 0.483603i
\(97\) −10.2685 31.6031i −0.105861 0.325805i 0.884071 0.467353i \(-0.154792\pi\)
−0.989931 + 0.141547i \(0.954792\pi\)
\(98\) 72.9574i 0.744464i
\(99\) −1.05051 + 0.444824i −0.0106113 + 0.00449317i
\(100\) 6.27352 0.0627352
\(101\) 100.840 32.7650i 0.998420 0.324406i 0.236186 0.971708i \(-0.424103\pi\)
0.762234 + 0.647302i \(0.224103\pi\)
\(102\) 33.5233 + 24.3561i 0.328660 + 0.238785i
\(103\) 158.992 115.514i 1.54361 1.12150i 0.595591 0.803288i \(-0.296918\pi\)
0.948020 0.318211i \(-0.103082\pi\)
\(104\) 4.95171 15.2398i 0.0476126 0.146537i
\(105\) −14.1370 4.59339i −0.134638 0.0437466i
\(106\) −38.3782 52.8230i −0.362058 0.498330i
\(107\) −90.2208 + 124.178i −0.843185 + 1.16054i 0.142139 + 0.989847i \(0.454602\pi\)
−0.985323 + 0.170697i \(0.945398\pi\)
\(108\) 10.5280 + 32.4019i 0.0974816 + 0.300018i
\(109\) 35.9768i 0.330062i −0.986288 0.165031i \(-0.947228\pi\)
0.986288 0.165031i \(-0.0527725\pi\)
\(110\) −40.6022 + 3.51616i −0.369111 + 0.0319651i
\(111\) 139.685 1.25842
\(112\) 19.9395 6.47874i 0.178031 0.0578459i
\(113\) −107.159 77.8559i −0.948314 0.688990i 0.00209353 0.999998i \(-0.499334\pi\)
−0.950407 + 0.311007i \(0.899334\pi\)
\(114\) −106.245 + 77.1918i −0.931977 + 0.677121i
\(115\) −5.27383 + 16.2312i −0.0458594 + 0.141141i
\(116\) −64.5599 20.9768i −0.556551 0.180834i
\(117\) 0.112194 + 0.154422i 0.000958923 + 0.00131984i
\(118\) −35.0689 + 48.2682i −0.297194 + 0.409052i
\(119\) −5.77476 17.7729i −0.0485274 0.149352i
\(120\) 58.0674i 0.483895i
\(121\) −119.199 + 20.8012i −0.985112 + 0.171911i
\(122\) −76.7503 −0.629101
\(123\) −77.0959 + 25.0500i −0.626796 + 0.203658i
\(124\) −3.55188 2.58059i −0.0286442 0.0208112i
\(125\) −9.04508 + 6.57164i −0.0723607 + 0.0525731i
\(126\) −0.118348 + 0.364237i −0.000939268 + 0.00289077i
\(127\) −21.4191 6.95949i −0.168654 0.0547991i 0.223473 0.974710i \(-0.428261\pi\)
−0.392127 + 0.919911i \(0.628261\pi\)
\(128\) −22.4562 30.9083i −0.175439 0.241471i
\(129\) 26.2473 36.1262i 0.203467 0.280048i
\(130\) 2.10713 + 6.48509i 0.0162087 + 0.0498853i
\(131\) 69.8904i 0.533515i −0.963764 0.266757i \(-0.914048\pi\)
0.963764 0.266757i \(-0.0859522\pi\)
\(132\) 3.55168 + 41.0125i 0.0269067 + 0.310701i
\(133\) 59.2264 0.445311
\(134\) −95.8812 + 31.1537i −0.715532 + 0.232490i
\(135\) −49.1208 35.6884i −0.363858 0.264358i
\(136\) −59.0596 + 42.9093i −0.434262 + 0.315509i
\(137\) 83.0828 255.703i 0.606444 1.86644i 0.119903 0.992786i \(-0.461742\pi\)
0.486541 0.873658i \(-0.338258\pi\)
\(138\) −35.8727 11.6557i −0.259947 0.0844619i
\(139\) −66.4957 91.5235i −0.478386 0.658442i 0.499807 0.866137i \(-0.333404\pi\)
−0.978194 + 0.207694i \(0.933404\pi\)
\(140\) 3.67542 5.05878i 0.0262530 0.0361342i
\(141\) 66.1327 + 203.535i 0.469026 + 1.44351i
\(142\) 203.169i 1.43077i
\(143\) 7.89400 + 18.6428i 0.0552028 + 0.130369i
\(144\) 0.975591 0.00677493
\(145\) 115.055 37.3837i 0.793484 0.257819i
\(146\) −80.1011 58.1968i −0.548638 0.398609i
\(147\) 106.252 77.1966i 0.722803 0.525147i
\(148\) −18.1580 + 55.8846i −0.122689 + 0.377599i
\(149\) 185.247 + 60.1904i 1.24327 + 0.403962i 0.855504 0.517796i \(-0.173247\pi\)
0.387764 + 0.921759i \(0.373247\pi\)
\(150\) −14.5240 19.9906i −0.0968270 0.133271i
\(151\) −82.9127 + 114.120i −0.549091 + 0.755758i −0.989888 0.141848i \(-0.954696\pi\)
0.440798 + 0.897606i \(0.354696\pi\)
\(152\) −71.4954 220.040i −0.470365 1.44763i
\(153\) 0.869583i 0.00568355i
\(154\) −20.9520 + 34.8004i −0.136052 + 0.225977i
\(155\) 7.82428 0.0504792
\(156\) 6.55062 2.12842i 0.0419911 0.0136437i
\(157\) −39.8372 28.9434i −0.253740 0.184353i 0.453643 0.891184i \(-0.350124\pi\)
−0.707383 + 0.706831i \(0.750124\pi\)
\(158\) −114.947 + 83.5138i −0.727512 + 0.528569i
\(159\) 36.3210 111.785i 0.228434 0.703048i
\(160\) −40.9157 13.2943i −0.255723 0.0830894i
\(161\) 9.99860 + 13.7619i 0.0621031 + 0.0854776i
\(162\) 77.9662 107.311i 0.481273 0.662415i
\(163\) 77.2981 + 237.899i 0.474222 + 1.45950i 0.847005 + 0.531586i \(0.178404\pi\)
−0.372783 + 0.927919i \(0.621596\pi\)
\(164\) 34.1006i 0.207930i
\(165\) −48.0822 55.4108i −0.291407 0.335823i
\(166\) −76.1154 −0.458526
\(167\) 263.329 85.5607i 1.57682 0.512340i 0.615585 0.788071i \(-0.288920\pi\)
0.961235 + 0.275731i \(0.0889199\pi\)
\(168\) 46.8238 + 34.0195i 0.278713 + 0.202497i
\(169\) −133.983 + 97.3447i −0.792801 + 0.576004i
\(170\) 9.59957 29.5444i 0.0564681 0.173791i
\(171\) 2.62108 + 0.851641i 0.0153280 + 0.00498036i
\(172\) 11.0413 + 15.1971i 0.0641937 + 0.0883550i
\(173\) −1.43083 + 1.96937i −0.00827072 + 0.0113837i −0.813132 0.582079i \(-0.802239\pi\)
0.804862 + 0.593463i \(0.202239\pi\)
\(174\) 82.6221 + 254.285i 0.474840 + 1.46141i
\(175\) 11.1438i 0.0636787i
\(176\) 100.803 + 23.3659i 0.572746 + 0.132761i
\(177\) −107.402 −0.606792
\(178\) 192.153 62.4343i 1.07951 0.350754i
\(179\) −117.428 85.3162i −0.656020 0.476627i 0.209296 0.977852i \(-0.432883\pi\)
−0.865317 + 0.501226i \(0.832883\pi\)
\(180\) 0.235399 0.171028i 0.00130777 0.000950153i
\(181\) −49.3147 + 151.775i −0.272457 + 0.838535i 0.717424 + 0.696636i \(0.245321\pi\)
−0.989881 + 0.141899i \(0.954679\pi\)
\(182\) 6.46387 + 2.10024i 0.0355158 + 0.0115398i
\(183\) −81.2098 111.776i −0.443769 0.610796i
\(184\) 39.0589 53.7600i 0.212277 0.292174i
\(185\) −32.3603 99.5947i −0.174920 0.538350i
\(186\) 17.2925i 0.0929706i
\(187\) 20.8270 89.8499i 0.111374 0.480481i
\(188\) −90.0266 −0.478865
\(189\) −57.5561 + 18.7011i −0.304529 + 0.0989476i
\(190\) 79.6508 + 57.8697i 0.419215 + 0.304578i
\(191\) −59.2898 + 43.0766i −0.310418 + 0.225532i −0.732076 0.681223i \(-0.761448\pi\)
0.421658 + 0.906755i \(0.361448\pi\)
\(192\) 64.0630 197.166i 0.333662 1.02691i
\(193\) 250.612 + 81.4288i 1.29851 + 0.421911i 0.875062 0.484010i \(-0.160820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(194\) −32.3621 44.5426i −0.166815 0.229601i
\(195\) −7.21503 + 9.93064i −0.0370002 + 0.0509263i
\(196\) 17.0726 + 52.5439i 0.0871049 + 0.268081i
\(197\) 219.288i 1.11313i 0.830803 + 0.556567i \(0.187882\pi\)
−0.830803 + 0.556567i \(0.812118\pi\)
\(198\) −1.42765 + 1.23883i −0.00721034 + 0.00625670i
\(199\) −108.109 −0.543261 −0.271630 0.962402i \(-0.587563\pi\)
−0.271630 + 0.962402i \(0.587563\pi\)
\(200\) 41.4018 13.4523i 0.207009 0.0672613i
\(201\) −146.823 106.673i −0.730464 0.530713i
\(202\) 142.128 103.262i 0.703605 0.511199i
\(203\) 37.2614 114.679i 0.183554 0.564920i
\(204\) −29.8430 9.69657i −0.146289 0.0475322i
\(205\) 35.7211 + 49.1658i 0.174249 + 0.239833i
\(206\) 191.395 263.433i 0.929102 1.27880i
\(207\) 0.244603 + 0.752811i 0.00118166 + 0.00363677i
\(208\) 17.3132i 0.0832364i
\(209\) 250.427 + 150.772i 1.19822 + 0.721399i
\(210\) −24.6290 −0.117281
\(211\) 237.612 77.2048i 1.12612 0.365900i 0.314022 0.949416i \(-0.398323\pi\)
0.812102 + 0.583516i \(0.198323\pi\)
\(212\) 40.0009 + 29.0624i 0.188684 + 0.137087i
\(213\) −295.887 + 214.974i −1.38914 + 1.00927i
\(214\) −78.5895 + 241.874i −0.367241 + 1.13025i
\(215\) −31.8385 10.3449i −0.148086 0.0481160i
\(216\) 138.958 + 191.260i 0.643325 + 0.885461i
\(217\) 4.58395 6.30927i 0.0211242 0.0290750i
\(218\) −18.4204 56.6922i −0.0844973 0.260056i
\(219\) 178.234i 0.813854i
\(220\) 28.4189 12.0335i 0.129177 0.0546979i
\(221\) −15.4319 −0.0698277
\(222\) 220.115 71.5198i 0.991510 0.322161i
\(223\) −114.964 83.5261i −0.515533 0.374557i 0.299385 0.954132i \(-0.403218\pi\)
−0.814919 + 0.579576i \(0.803218\pi\)
\(224\) −34.6911 + 25.2046i −0.154871 + 0.112520i
\(225\) −0.160241 + 0.493171i −0.000712182 + 0.00219187i
\(226\) −208.725 67.8188i −0.923561 0.300083i
\(227\) 24.2567 + 33.3864i 0.106858 + 0.147077i 0.859097 0.511814i \(-0.171026\pi\)
−0.752239 + 0.658890i \(0.771026\pi\)
\(228\) 58.4545 80.4557i 0.256379 0.352876i
\(229\) 110.190 + 339.131i 0.481180 + 1.48092i 0.837438 + 0.546532i \(0.184052\pi\)
−0.356258 + 0.934387i \(0.615948\pi\)
\(230\) 28.2773i 0.122945i
\(231\) −72.8512 + 6.30892i −0.315373 + 0.0273113i
\(232\) −471.040 −2.03035
\(233\) −181.617 + 59.0111i −0.779474 + 0.253266i −0.671615 0.740900i \(-0.734399\pi\)
−0.107858 + 0.994166i \(0.534399\pi\)
\(234\) 0.255861 + 0.185894i 0.00109342 + 0.000794417i
\(235\) 129.799 94.3046i 0.552337 0.401296i
\(236\) 13.9615 42.9691i 0.0591589 0.182073i
\(237\) −243.252 79.0373i −1.02638 0.333491i
\(238\) −18.1997 25.0498i −0.0764695 0.105251i
\(239\) −165.024 + 227.136i −0.690476 + 0.950359i −1.00000 0.000532544i \(-0.999830\pi\)
0.309523 + 0.950892i \(0.399830\pi\)
\(240\) 19.3873 + 59.6681i 0.0807806 + 0.248617i
\(241\) 274.304i 1.13819i −0.822271 0.569096i \(-0.807293\pi\)
0.822271 0.569096i \(-0.192707\pi\)
\(242\) −177.183 + 93.8092i −0.732160 + 0.387641i
\(243\) −5.60007 −0.0230455
\(244\) 55.2755 17.9601i 0.226539 0.0736070i
\(245\) −79.6558 57.8733i −0.325126 0.236218i
\(246\) −108.662 + 78.9475i −0.441715 + 0.320925i
\(247\) 15.1135 46.5146i 0.0611883 0.188318i
\(248\) −28.9740 9.41422i −0.116831 0.0379606i
\(249\) −80.5380 110.851i −0.323446 0.445185i
\(250\) −10.8885 + 14.9867i −0.0435540 + 0.0599470i
\(251\) −37.0091 113.902i −0.147447 0.453794i 0.849871 0.526991i \(-0.176680\pi\)
−0.997318 + 0.0731969i \(0.976680\pi\)
\(252\) 0.290018i 0.00115086i
\(253\) 7.24348 + 83.6429i 0.0286304 + 0.330604i
\(254\) −37.3155 −0.146911
\(255\) 53.1846 17.2807i 0.208567 0.0677675i
\(256\) 173.714 + 126.210i 0.678568 + 0.493009i
\(257\) −29.6399 + 21.5347i −0.115331 + 0.0837925i −0.643955 0.765063i \(-0.722708\pi\)
0.528625 + 0.848856i \(0.322708\pi\)
\(258\) 22.8635 70.3665i 0.0886181 0.272738i
\(259\) −99.2689 32.2544i −0.383277 0.124534i
\(260\) −3.03511 4.17748i −0.0116735 0.0160672i
\(261\) 3.29803 4.53935i 0.0126361 0.0173922i
\(262\) −35.7845 110.133i −0.136582 0.420356i
\(263\) 26.4631i 0.100620i −0.998734 0.0503101i \(-0.983979\pi\)
0.998734 0.0503101i \(-0.0160210\pi\)
\(264\) 111.382 + 263.044i 0.421901 + 0.996379i
\(265\) −88.1163 −0.332514
\(266\) 93.3289 30.3244i 0.350860 0.114001i
\(267\) 294.244 + 213.781i 1.10204 + 0.800678i
\(268\) 61.7635 44.8738i 0.230461 0.167440i
\(269\) 12.2133 37.5885i 0.0454024 0.139734i −0.925786 0.378049i \(-0.876595\pi\)
0.971188 + 0.238315i \(0.0765950\pi\)
\(270\) −95.6773 31.0874i −0.354360 0.115139i
\(271\) −244.596 336.658i −0.902568 1.24228i −0.969642 0.244531i \(-0.921366\pi\)
0.0670732 0.997748i \(-0.478634\pi\)
\(272\) −46.3612 + 63.8108i −0.170446 + 0.234598i
\(273\) 3.78076 + 11.6360i 0.0138489 + 0.0426226i
\(274\) 445.475i 1.62582i
\(275\) −28.3687 + 47.1192i −0.103159 + 0.171343i
\(276\) 28.5630 0.103489
\(277\) −114.108 + 37.0759i −0.411942 + 0.133848i −0.507654 0.861561i \(-0.669487\pi\)
0.0957120 + 0.995409i \(0.469487\pi\)
\(278\) −151.645 110.176i −0.545484 0.396318i
\(279\) 0.293588 0.213304i 0.00105229 0.000764531i
\(280\) 13.4083 41.2664i 0.0478866 0.147380i
\(281\) 406.555 + 132.098i 1.44681 + 0.470098i 0.924014 0.382358i \(-0.124888\pi\)
0.522799 + 0.852456i \(0.324888\pi\)
\(282\) 208.424 + 286.871i 0.739091 + 1.01727i
\(283\) 119.366 164.293i 0.421787 0.580541i −0.544256 0.838919i \(-0.683188\pi\)
0.966044 + 0.258378i \(0.0831881\pi\)
\(284\) −47.5431 146.323i −0.167405 0.515220i
\(285\) 177.232i 0.621867i
\(286\) 21.9846 + 25.3355i 0.0768693 + 0.0885857i
\(287\) 60.5735 0.211057
\(288\) −1.89769 + 0.616598i −0.00658921 + 0.00214096i
\(289\) −176.929 128.546i −0.612211 0.444797i
\(290\) 162.163 117.818i 0.559183 0.406271i
\(291\) 30.6274 94.2615i 0.105249 0.323923i
\(292\) 71.3073 + 23.1691i 0.244203 + 0.0793464i
\(293\) 240.571 + 331.117i 0.821061 + 1.13009i 0.989522 + 0.144385i \(0.0461205\pi\)
−0.168460 + 0.985708i \(0.553880\pi\)
\(294\) 127.907 176.048i 0.435056 0.598803i
\(295\) 24.8815 + 76.5773i 0.0843440 + 0.259584i
\(296\) 407.744i 1.37751i
\(297\) −290.972 67.4465i −0.979703 0.227092i
\(298\) 322.730 1.08299
\(299\) 13.3597 4.34081i 0.0446811 0.0145178i
\(300\) 15.1382 + 10.9985i 0.0504606 + 0.0366618i
\(301\) −26.9948 + 19.6129i −0.0896838 + 0.0651591i
\(302\) −72.2236 + 222.281i −0.239151 + 0.736031i
\(303\) 300.773 + 97.7271i 0.992651 + 0.322532i
\(304\) −146.933 202.235i −0.483331 0.665248i
\(305\) −60.8820 + 83.7969i −0.199613 + 0.274744i
\(306\) −0.445233 1.37029i −0.00145501 0.00447806i
\(307\) 548.367i 1.78621i 0.449846 + 0.893106i \(0.351479\pi\)
−0.449846 + 0.893106i \(0.648521\pi\)
\(308\) 6.94608 29.9662i 0.0225522 0.0972928i
\(309\) 586.168 1.89698
\(310\) 12.3295 4.00610i 0.0397726 0.0129229i
\(311\) −37.3991 27.1721i −0.120254 0.0873700i 0.526032 0.850465i \(-0.323679\pi\)
−0.646287 + 0.763095i \(0.723679\pi\)
\(312\) 38.6665 28.0929i 0.123931 0.0900412i
\(313\) 0.359023 1.10496i 0.00114704 0.00353022i −0.950481 0.310782i \(-0.899409\pi\)
0.951628 + 0.307251i \(0.0994092\pi\)
\(314\) −77.5947 25.2120i −0.247117 0.0802931i
\(315\) 0.303799 + 0.418144i 0.000964442 + 0.00132744i
\(316\) 63.2419 87.0451i 0.200133 0.275459i
\(317\) 36.3906 + 111.999i 0.114797 + 0.353308i 0.991905 0.126985i \(-0.0405301\pi\)
−0.877108 + 0.480294i \(0.840530\pi\)
\(318\) 194.747i 0.612411i
\(319\) 449.490 390.041i 1.40906 1.22270i
\(320\) −155.420 −0.485686
\(321\) −435.410 + 141.473i −1.35642 + 0.440727i
\(322\) 22.8020 + 16.5666i 0.0708137 + 0.0514491i
\(323\) −180.261 + 130.967i −0.558082 + 0.405470i
\(324\) −31.0396 + 95.5302i −0.0958014 + 0.294846i
\(325\) 8.75198 + 2.84369i 0.0269292 + 0.00874982i
\(326\) 243.613 + 335.304i 0.747278 + 1.02854i
\(327\) 63.0733 86.8130i 0.192885 0.265483i
\(328\) −73.1216 225.045i −0.222932 0.686113i
\(329\) 159.916i 0.486066i
\(330\) −104.139 62.6979i −0.315572 0.189994i
\(331\) −151.229 −0.456885 −0.228443 0.973557i \(-0.573363\pi\)
−0.228443 + 0.973557i \(0.573363\pi\)
\(332\) 54.8183 17.8115i 0.165115 0.0536492i
\(333\) −3.92937 2.85486i −0.0117999 0.00857315i
\(334\) 371.146 269.653i 1.11121 0.807345i
\(335\) −42.0436 + 129.397i −0.125503 + 0.386260i
\(336\) 59.4729 + 19.3239i 0.177003 + 0.0575117i
\(337\) −211.142 290.612i −0.626534 0.862351i 0.371274 0.928523i \(-0.378921\pi\)
−0.997808 + 0.0661727i \(0.978921\pi\)
\(338\) −161.290 + 221.996i −0.477189 + 0.656794i
\(339\) −122.084 375.737i −0.360131 1.10837i
\(340\) 23.5243i 0.0691890i
\(341\) 35.4438 15.0081i 0.103941 0.0440121i
\(342\) 4.56635 0.0133519
\(343\) −197.199 + 64.0737i −0.574923 + 0.186804i
\(344\) 105.454 + 76.6165i 0.306551 + 0.222722i
\(345\) −41.1819 + 29.9204i −0.119368 + 0.0867257i
\(346\) −1.24637 + 3.83594i −0.00360223 + 0.0110865i
\(347\) −73.4954 23.8801i −0.211802 0.0688187i 0.201194 0.979551i \(-0.435518\pi\)
−0.412996 + 0.910733i \(0.635518\pi\)
\(348\) −119.009 163.802i −0.341980 0.470695i
\(349\) −246.959 + 339.910i −0.707619 + 0.973954i 0.292226 + 0.956349i \(0.405604\pi\)
−0.999845 + 0.0176044i \(0.994396\pi\)
\(350\) 5.70570 + 17.5603i 0.0163020 + 0.0501724i
\(351\) 49.9750i 0.142379i
\(352\) −210.848 + 18.2594i −0.598999 + 0.0518734i
\(353\) 640.543 1.81457 0.907285 0.420516i \(-0.138151\pi\)
0.907285 + 0.420516i \(0.138151\pi\)
\(354\) −169.244 + 54.9908i −0.478091 + 0.155341i
\(355\) 221.823 + 161.164i 0.624853 + 0.453982i
\(356\) −123.778 + 89.9303i −0.347692 + 0.252613i
\(357\) 17.2242 53.0106i 0.0482470 0.148489i
\(358\) −228.725 74.3172i −0.638896 0.207590i
\(359\) −198.623 273.381i −0.553268 0.761508i 0.437183 0.899372i \(-0.355976\pi\)
−0.990451 + 0.137865i \(0.955976\pi\)
\(360\) 1.18677 1.63345i 0.00329659 0.00453737i
\(361\) −106.662 328.272i −0.295462 0.909340i
\(362\) 264.416i 0.730432i
\(363\) −324.097 158.781i −0.892830 0.437414i
\(364\) −5.14675 −0.0141394
\(365\) −127.080 + 41.2908i −0.348165 + 0.113126i
\(366\) −185.200 134.556i −0.506012 0.367639i
\(367\) 381.543 277.207i 1.03963 0.755333i 0.0694140 0.997588i \(-0.477887\pi\)
0.970213 + 0.242255i \(0.0778871\pi\)
\(368\) 22.1864 68.2828i 0.0602892 0.185551i
\(369\) 2.68070 + 0.871012i 0.00726477 + 0.00236047i
\(370\) −101.987 140.372i −0.275639 0.379385i
\(371\) −51.6240 + 71.0543i −0.139148 + 0.191521i
\(372\) −4.04657 12.4541i −0.0108779 0.0334787i
\(373\) 50.8370i 0.136292i −0.997675 0.0681461i \(-0.978292\pi\)
0.997675 0.0681461i \(-0.0217084\pi\)
\(374\) −13.1848 152.249i −0.0352534 0.407083i
\(375\) −33.3472 −0.0889259
\(376\) −594.126 + 193.043i −1.58012 + 0.513413i
\(377\) −80.5569 58.5280i −0.213679 0.155247i
\(378\) −81.1217 + 58.9384i −0.214608 + 0.155922i
\(379\) −181.638 + 559.025i −0.479256 + 1.47500i 0.360874 + 0.932615i \(0.382479\pi\)
−0.840130 + 0.542385i \(0.817521\pi\)
\(380\) −70.9065 23.0389i −0.186596 0.0606287i
\(381\) −39.4837 54.3447i −0.103632 0.142637i
\(382\) −71.3733 + 98.2369i −0.186841 + 0.257165i
\(383\) −10.4312 32.1040i −0.0272356 0.0838226i 0.936515 0.350628i \(-0.114032\pi\)
−0.963750 + 0.266806i \(0.914032\pi\)
\(384\) 113.952i 0.296750i
\(385\) 21.3754 + 50.4810i 0.0555205 + 0.131120i
\(386\) 436.607 1.13111
\(387\) −1.47669 + 0.479804i −0.00381573 + 0.00123980i
\(388\) 33.7305 + 24.5066i 0.0869342 + 0.0631614i
\(389\) −418.883 + 304.337i −1.07682 + 0.782356i −0.977126 0.212662i \(-0.931787\pi\)
−0.0996952 + 0.995018i \(0.531787\pi\)
\(390\) −6.28487 + 19.3428i −0.0161151 + 0.0495970i
\(391\) −60.8632 19.7757i −0.155660 0.0505771i
\(392\) 225.339 + 310.153i 0.574845 + 0.791206i
\(393\) 122.530 168.647i 0.311780 0.429128i
\(394\) 112.277 + 345.553i 0.284967 + 0.877038i
\(395\) 191.748i 0.485437i
\(396\) 0.738297 1.22628i 0.00186439 0.00309667i
\(397\) 86.1063 0.216893 0.108446 0.994102i \(-0.465412\pi\)
0.108446 + 0.994102i \(0.465412\pi\)
\(398\) −170.358 + 55.3526i −0.428035 + 0.139077i
\(399\) 142.915 + 103.834i 0.358182 + 0.260235i
\(400\) 38.0517 27.6462i 0.0951293 0.0691155i
\(401\) 49.8340 153.373i 0.124274 0.382477i −0.869494 0.493944i \(-0.835555\pi\)
0.993768 + 0.111467i \(0.0355548\pi\)
\(402\) −285.982 92.9211i −0.711397 0.231147i
\(403\) −3.78537 5.21011i −0.00939297 0.0129283i
\(404\) −78.1967 + 107.629i −0.193556 + 0.266407i
\(405\) −55.3172 170.249i −0.136586 0.420368i
\(406\) 199.789i 0.492091i
\(407\) −337.629 389.090i −0.829555 0.955995i
\(408\) −217.739 −0.533675
\(409\) 220.213 71.5515i 0.538418 0.174943i −0.0271696 0.999631i \(-0.508649\pi\)
0.565588 + 0.824688i \(0.308649\pi\)
\(410\) 81.4625 + 59.1860i 0.198689 + 0.144356i
\(411\) 648.771 471.359i 1.57852 1.14686i
\(412\) −76.1976 + 234.512i −0.184946 + 0.569204i
\(413\) 76.3268 + 24.8001i 0.184811 + 0.0600486i
\(414\) 0.770891 + 1.06104i 0.00186206 + 0.00256290i
\(415\) −60.3784 + 83.1037i −0.145490 + 0.200250i
\(416\) 10.9424 + 33.6771i 0.0263037 + 0.0809546i
\(417\) 337.427i 0.809177i
\(418\) 471.819 + 109.366i 1.12875 + 0.261642i
\(419\) 428.346 1.02231 0.511153 0.859490i \(-0.329219\pi\)
0.511153 + 0.859490i \(0.329219\pi\)
\(420\) 17.7378 5.76335i 0.0422328 0.0137223i
\(421\) 423.964 + 308.028i 1.00704 + 0.731657i 0.963586 0.267398i \(-0.0861639\pi\)
0.0434535 + 0.999055i \(0.486164\pi\)
\(422\) 334.899 243.319i 0.793600 0.576584i
\(423\) 2.29950 7.07712i 0.00543616 0.0167308i
\(424\) 326.302 + 106.022i 0.769581 + 0.250052i
\(425\) −24.6421 33.9170i −0.0579815 0.0798047i
\(426\) −356.190 + 490.253i −0.836126 + 1.15083i
\(427\) 31.9029 + 98.1869i 0.0747140 + 0.229946i
\(428\) 192.588i 0.449972i
\(429\) −13.6355 + 58.8251i −0.0317844 + 0.137121i
\(430\) −55.4677 −0.128995
\(431\) 8.66101 2.81413i 0.0200952 0.00652931i −0.298952 0.954268i \(-0.596637\pi\)
0.319047 + 0.947739i \(0.396637\pi\)
\(432\) 206.646 + 150.137i 0.478347 + 0.347540i
\(433\) 159.214 115.676i 0.367700 0.267150i −0.388556 0.921425i \(-0.627026\pi\)
0.756257 + 0.654275i \(0.227026\pi\)
\(434\) 3.99299 12.2892i 0.00920044 0.0283160i
\(435\) 343.171 + 111.503i 0.788899 + 0.256329i
\(436\) 26.5328 + 36.5192i 0.0608550 + 0.0837597i
\(437\) 119.215 164.085i 0.272803 0.375481i
\(438\) −91.2573 280.861i −0.208350 0.641235i
\(439\) 48.0326i 0.109414i 0.998502 + 0.0547069i \(0.0174224\pi\)
−0.998502 + 0.0547069i \(0.982578\pi\)
\(440\) 161.746 140.353i 0.367604 0.318985i
\(441\) −4.56663 −0.0103552
\(442\) −24.3176 + 7.90127i −0.0550172 + 0.0178762i
\(443\) 102.069 + 74.1577i 0.230405 + 0.167399i 0.696998 0.717073i \(-0.254519\pi\)
−0.466593 + 0.884472i \(0.654519\pi\)
\(444\) −141.791 + 103.017i −0.319349 + 0.232020i
\(445\) 84.2584 259.321i 0.189345 0.582743i
\(446\) −223.926 72.7580i −0.502076 0.163135i
\(447\) 341.482 + 470.010i 0.763942 + 1.05148i
\(448\) −91.0545 + 125.326i −0.203247 + 0.279745i
\(449\) −13.6570 42.0320i −0.0304165 0.0936124i 0.934696 0.355449i \(-0.115672\pi\)
−0.965112 + 0.261836i \(0.915672\pi\)
\(450\) 0.859183i 0.00190930i
\(451\) 256.123 + 154.202i 0.567900 + 0.341911i
\(452\) 166.194 0.367685
\(453\) −400.141 + 130.014i −0.883314 + 0.287006i
\(454\) 55.3177 + 40.1907i 0.121845 + 0.0885258i
\(455\) 7.42052 5.39133i 0.0163088 0.0118491i
\(456\) 213.247 656.307i 0.467647 1.43927i
\(457\) −503.324 163.540i −1.10137 0.357855i −0.298738 0.954335i \(-0.596566\pi\)
−0.802628 + 0.596480i \(0.796566\pi\)
\(458\) 347.275 + 477.983i 0.758243 + 1.04363i
\(459\) 133.823 184.192i 0.291554 0.401289i
\(460\) −6.61710 20.3653i −0.0143850 0.0442725i
\(461\) 258.714i 0.561202i −0.959825 0.280601i \(-0.909466\pi\)
0.959825 0.280601i \(-0.0905337\pi\)
\(462\) −111.569 + 47.2420i −0.241491 + 0.102255i
\(463\) −269.759 −0.582633 −0.291317 0.956627i \(-0.594093\pi\)
−0.291317 + 0.956627i \(0.594093\pi\)
\(464\) −484.025 + 157.269i −1.04316 + 0.338942i
\(465\) 18.8802 + 13.7173i 0.0406026 + 0.0294995i
\(466\) −255.978 + 185.979i −0.549310 + 0.399097i
\(467\) −39.5114 + 121.604i −0.0846070 + 0.260393i −0.984406 0.175911i \(-0.943713\pi\)
0.899799 + 0.436304i \(0.143713\pi\)
\(468\) −0.227771 0.0740073i −0.000486691 0.000158135i
\(469\) 79.7101 + 109.712i 0.169958 + 0.233927i
\(470\) 156.253 215.063i 0.332453 0.457582i
\(471\) −45.3856 139.682i −0.0963600 0.296566i
\(472\) 313.510i 0.664216i
\(473\) −164.071 + 14.2085i −0.346872 + 0.0300392i
\(474\) −423.784 −0.894058
\(475\) 126.366 41.0587i 0.266033 0.0864394i
\(476\) 18.9693 + 13.7820i 0.0398514 + 0.0289537i
\(477\) −3.30636 + 2.40221i −0.00693157 + 0.00503608i
\(478\) −143.749 + 442.414i −0.300730 + 0.925553i
\(479\) −478.561 155.494i −0.999084 0.324622i −0.236584 0.971611i \(-0.576028\pi\)
−0.762499 + 0.646989i \(0.776028\pi\)
\(480\) −75.4235 103.812i −0.157132 0.216274i
\(481\) −50.6633 + 69.7320i −0.105329 + 0.144973i
\(482\) −140.446 432.249i −0.291382 0.896781i
\(483\) 50.7370i 0.105046i
\(484\) 105.655 109.023i 0.218295 0.225255i
\(485\) −74.3034 −0.153203
\(486\) −8.82458 + 2.86728i −0.0181576 + 0.00589975i
\(487\) 166.147 + 120.713i 0.341164 + 0.247870i 0.745153 0.666894i \(-0.232377\pi\)
−0.403989 + 0.914764i \(0.632377\pi\)
\(488\) 326.277 237.054i 0.668599 0.485766i
\(489\) −230.554 + 709.574i −0.471481 + 1.45107i
\(490\) −155.153 50.4123i −0.316639 0.102882i
\(491\) −56.3909 77.6154i −0.114849 0.158076i 0.747722 0.664011i \(-0.231147\pi\)
−0.862571 + 0.505935i \(0.831147\pi\)
\(492\) 59.7840 82.2856i 0.121512 0.167247i
\(493\) 140.180 + 431.431i 0.284342 + 0.875113i
\(494\) 81.0360i 0.164040i
\(495\) 0.220087 + 2.54142i 0.000444620 + 0.00513418i
\(496\) −32.9159 −0.0663627
\(497\) 259.915 84.4516i 0.522969 0.169923i
\(498\) −183.668 133.443i −0.368812 0.267958i
\(499\) −183.447 + 133.282i −0.367630 + 0.267099i −0.756227 0.654309i \(-0.772960\pi\)
0.388598 + 0.921408i \(0.372960\pi\)
\(500\) 4.33490 13.3414i 0.00866979 0.0266829i
\(501\) 785.422 + 255.199i 1.56771 + 0.509379i
\(502\) −116.638 160.538i −0.232346 0.319797i
\(503\) 56.2423 77.4109i 0.111814 0.153898i −0.749442 0.662070i \(-0.769678\pi\)
0.861256 + 0.508171i \(0.169678\pi\)
\(504\) −0.621882 1.91396i −0.00123389 0.00379753i
\(505\) 237.090i 0.469485i
\(506\) 54.2401 + 128.096i 0.107194 + 0.253154i
\(507\) −493.967 −0.974294
\(508\) 26.8746 8.73210i 0.0529028 0.0171892i
\(509\) 80.9705 + 58.8285i 0.159078 + 0.115577i 0.664476 0.747309i \(-0.268655\pi\)
−0.505399 + 0.862886i \(0.668655\pi\)
\(510\) 74.9603 54.4619i 0.146981 0.106788i
\(511\) −41.1557 + 126.664i −0.0805396 + 0.247875i
\(512\) 483.698 + 157.163i 0.944723 + 0.306959i
\(513\) 424.126 + 583.759i 0.826756 + 1.13793i
\(514\) −35.6807 + 49.1102i −0.0694177 + 0.0955452i
\(515\) −135.795 417.935i −0.263680 0.811524i
\(516\) 56.0282i 0.108582i
\(517\) 407.097 676.172i 0.787422 1.30788i
\(518\) −172.942 −0.333865
\(519\) −6.90528 + 2.24366i −0.0133050 + 0.00432305i
\(520\) −28.9878 21.0609i −0.0557458 0.0405017i
\(521\) −398.168 + 289.286i −0.764237 + 0.555251i −0.900207 0.435462i \(-0.856585\pi\)
0.135970 + 0.990713i \(0.456585\pi\)
\(522\) 2.87285 8.84173i 0.00550355 0.0169382i
\(523\) −423.738 137.681i −0.810206 0.263252i −0.125521 0.992091i \(-0.540060\pi\)
−0.684685 + 0.728839i \(0.740060\pi\)
\(524\) 51.5440 + 70.9442i 0.0983663 + 0.135390i
\(525\) −19.5369 + 26.8902i −0.0372131 + 0.0512194i
\(526\) −13.5493 41.7006i −0.0257592 0.0792787i
\(527\) 29.3393i 0.0556722i
\(528\) 202.277 + 233.107i 0.383100 + 0.441491i
\(529\) −470.747 −0.889881
\(530\) −138.854 + 45.1162i −0.261988 + 0.0851250i
\(531\) 3.02126 + 2.19507i 0.00568975 + 0.00413384i
\(532\) −60.1193 + 43.6792i −0.113006 + 0.0821039i
\(533\) 15.4573 47.5726i 0.0290005 0.0892544i
\(534\) 573.128 + 186.220i 1.07327 + 0.348728i
\(535\) 201.740 + 277.671i 0.377084 + 0.519011i
\(536\) 311.383 428.581i 0.580938 0.799592i
\(537\) −133.783 411.740i −0.249130 0.766742i
\(538\) 65.4853i 0.121720i
\(539\) −471.849 109.373i −0.875415 0.202919i
\(540\) 76.1815 0.141077
\(541\) −102.718 + 33.3750i −0.189866 + 0.0616913i −0.402407 0.915461i \(-0.631826\pi\)
0.212541 + 0.977152i \(0.431826\pi\)
\(542\) −557.806 405.270i −1.02916 0.747730i
\(543\) −385.084 + 279.780i −0.709179 + 0.515249i
\(544\) 49.8506 153.424i 0.0916372 0.282030i
\(545\) −76.5093 24.8594i −0.140384 0.0456135i
\(546\) 11.9154 + 16.4002i 0.0218231 + 0.0300370i
\(547\) −18.4002 + 25.3257i −0.0336384 + 0.0462993i −0.825505 0.564395i \(-0.809110\pi\)
0.791867 + 0.610694i \(0.209110\pi\)
\(548\) 104.244 + 320.831i 0.190227 + 0.585459i
\(549\) 4.80404i 0.00875052i
\(550\) −20.5779 + 88.7754i −0.0374144 + 0.161410i
\(551\) −1437.70 −2.60926
\(552\) 188.500 61.2475i 0.341486 0.110956i
\(553\) 154.620 + 112.338i 0.279602 + 0.203142i
\(554\) −160.828 + 116.848i −0.290303 + 0.210918i
\(555\) 96.5198 297.058i 0.173910 0.535239i
\(556\) 134.997 + 43.8630i 0.242799 + 0.0788903i
\(557\) 75.6402 + 104.110i 0.135799 + 0.186912i 0.871501 0.490394i \(-0.163147\pi\)
−0.735701 + 0.677306i \(0.763147\pi\)
\(558\) 0.353422 0.486444i 0.000633373 0.000871763i
\(559\) 8.51477 + 26.2058i 0.0152322 + 0.0468797i
\(560\) 46.8806i 0.0837154i
\(561\) 207.778 180.297i 0.370371 0.321385i
\(562\) 708.284 1.26029
\(563\) 281.575 91.4894i 0.500134 0.162503i −0.0480767 0.998844i \(-0.515309\pi\)
0.548211 + 0.836340i \(0.315309\pi\)
\(564\) −217.237 157.832i −0.385171 0.279843i
\(565\) −239.616 + 174.091i −0.424099 + 0.308126i
\(566\) 103.977 320.009i 0.183705 0.565387i
\(567\) −169.692 55.1363i −0.299280 0.0972421i
\(568\) −627.517 863.703i −1.10478 1.52060i
\(569\) 355.335 489.077i 0.624491 0.859538i −0.373179 0.927759i \(-0.621732\pi\)
0.997670 + 0.0682211i \(0.0217323\pi\)
\(570\) 90.7443 + 279.282i 0.159201 + 0.489969i
\(571\) 612.659i 1.07296i 0.843914 + 0.536479i \(0.180246\pi\)
−0.843914 + 0.536479i \(0.819754\pi\)
\(572\) −21.7620 13.1021i −0.0380455 0.0229057i
\(573\) −218.588 −0.381481
\(574\) 95.4517 31.0141i 0.166292 0.0540316i
\(575\) 30.8735 + 22.4309i 0.0536931 + 0.0390103i
\(576\) −5.83176 + 4.23702i −0.0101246 + 0.00735594i
\(577\) −148.690 + 457.620i −0.257694 + 0.793101i 0.735593 + 0.677424i \(0.236904\pi\)
−0.993287 + 0.115677i \(0.963096\pi\)
\(578\) −344.621 111.974i −0.596230 0.193727i
\(579\) 461.976 + 635.855i 0.797885 + 1.09819i
\(580\) −89.2196 + 122.800i −0.153827 + 0.211724i
\(581\) 31.6390 + 97.3747i 0.0544560 + 0.167598i
\(582\) 164.219i 0.282163i
\(583\) −399.165 + 169.020i −0.684674 + 0.289914i
\(584\) 520.270 0.890874
\(585\) 0.405922 0.131892i 0.000693884 0.000225456i
\(586\) 548.626 + 398.600i 0.936222 + 0.680205i
\(587\) −298.317 + 216.740i −0.508206 + 0.369233i −0.812143 0.583459i \(-0.801699\pi\)
0.303937 + 0.952692i \(0.401699\pi\)
\(588\) −50.9217 + 156.721i −0.0866016 + 0.266532i
\(589\) −88.4339 28.7339i −0.150142 0.0487842i
\(590\) 78.4164 + 107.931i 0.132909 + 0.182934i
\(591\) −384.448 + 529.147i −0.650503 + 0.895341i
\(592\) 136.136 + 418.984i 0.229960 + 0.707744i
\(593\) 881.291i 1.48616i −0.669204 0.743079i \(-0.733365\pi\)
0.669204 0.743079i \(-0.266635\pi\)
\(594\) −493.046 + 42.6979i −0.830044 + 0.0718819i
\(595\) −41.7866 −0.0702295
\(596\) −232.430 + 75.5211i −0.389984 + 0.126713i
\(597\) −260.870 189.533i −0.436967 0.317475i
\(598\) 18.8296 13.6805i 0.0314876 0.0228771i
\(599\) 276.534 851.084i 0.461659 1.42084i −0.401477 0.915869i \(-0.631503\pi\)
0.863136 0.504972i \(-0.168497\pi\)
\(600\) 123.488 + 40.1236i 0.205813 + 0.0668726i
\(601\) −449.838 619.149i −0.748483 1.03020i −0.998085 0.0618498i \(-0.980300\pi\)
0.249603 0.968348i \(-0.419700\pi\)
\(602\) −32.4964 + 44.7275i −0.0539808 + 0.0742982i
\(603\) 1.95001 + 6.00150i 0.00323384 + 0.00995274i
\(604\) 176.988i 0.293026i
\(605\) −38.1278 + 267.864i −0.0630211 + 0.442751i
\(606\) 523.995 0.864679
\(607\) 1053.73 342.377i 1.73596 0.564048i 0.741672 0.670763i \(-0.234033\pi\)
0.994290 + 0.106715i \(0.0340332\pi\)
\(608\) 413.627 + 300.518i 0.680308 + 0.494273i
\(609\) 290.964 211.398i 0.477773 0.347123i
\(610\) −53.0331 + 163.219i −0.0869396 + 0.267572i
\(611\) −125.593 40.8077i −0.205553 0.0667883i
\(612\) 0.641314 + 0.882693i 0.00104790 + 0.00144231i
\(613\) 75.0479 103.295i 0.122427 0.168507i −0.743404 0.668842i \(-0.766790\pi\)
0.865831 + 0.500336i \(0.166790\pi\)
\(614\) 280.769 + 864.117i 0.457278 + 1.40736i
\(615\) 181.263i 0.294737i
\(616\) −18.4159 212.655i −0.0298960 0.345219i
\(617\) 182.872 0.296389 0.148195 0.988958i \(-0.452654\pi\)
0.148195 + 0.988958i \(0.452654\pi\)
\(618\) 923.683 300.123i 1.49463 0.485635i
\(619\) −93.6587 68.0470i −0.151306 0.109931i 0.509556 0.860437i \(-0.329810\pi\)
−0.660863 + 0.750507i \(0.729810\pi\)
\(620\) −7.94225 + 5.77038i −0.0128101 + 0.00930706i
\(621\) −64.0419 + 197.101i −0.103127 + 0.317392i
\(622\) −72.8458 23.6690i −0.117116 0.0380531i
\(623\) −159.745 219.870i −0.256412 0.352921i
\(624\) 30.3529 41.7771i 0.0486424 0.0669505i
\(625\) 7.72542 + 23.7764i 0.0123607 + 0.0380423i
\(626\) 1.92501i 0.00307510i
\(627\) 339.958 + 802.858i 0.542197 + 1.28048i
\(628\) 61.7835 0.0983813
\(629\) 373.457 121.344i 0.593732 0.192915i
\(630\) 0.692820 + 0.503363i 0.00109971 + 0.000798989i
\(631\) 675.353 490.673i 1.07029 0.777611i 0.0943258 0.995541i \(-0.469930\pi\)
0.975964 + 0.217930i \(0.0699305\pi\)
\(632\) 230.712 710.059i 0.365051 1.12351i
\(633\) 708.717 + 230.276i 1.11962 + 0.363785i
\(634\) 114.689 + 157.855i 0.180897 + 0.248983i
\(635\) −29.6005 + 40.7415i −0.0466149 + 0.0641599i
\(636\) 45.5721 + 140.257i 0.0716543 + 0.220529i
\(637\) 81.0410i 0.127223i
\(638\) 508.602 844.768i 0.797183 1.32409i
\(639\) 12.7170 0.0199014
\(640\) −81.2473 + 26.3989i −0.126949 + 0.0412482i
\(641\) −20.3823 14.8086i −0.0317976 0.0231023i 0.571773 0.820412i \(-0.306256\pi\)
−0.603571 + 0.797310i \(0.706256\pi\)
\(642\) −613.684 + 445.867i −0.955893 + 0.694497i
\(643\) 126.790 390.218i 0.197184 0.606871i −0.802760 0.596303i \(-0.796636\pi\)
0.999944 0.0105686i \(-0.00336414\pi\)
\(644\) −20.2987 6.59545i −0.0315197 0.0102414i
\(645\) −58.6906 80.7807i −0.0909932 0.125241i
\(646\) −216.998 + 298.672i −0.335911 + 0.462341i
\(647\) 213.067 + 655.754i 0.329316 + 1.01353i 0.969455 + 0.245270i \(0.0788767\pi\)
−0.640139 + 0.768259i \(0.721123\pi\)
\(648\) 697.005i 1.07563i
\(649\) 259.599 + 299.167i 0.399999 + 0.460966i
\(650\) 15.2474 0.0234575
\(651\) 22.1224 7.18800i 0.0339822 0.0110415i
\(652\) −253.913 184.479i −0.389438 0.282943i
\(653\) 291.983 212.138i 0.447140 0.324866i −0.341325 0.939945i \(-0.610876\pi\)
0.788466 + 0.615079i \(0.210876\pi\)
\(654\) 54.9419 169.094i 0.0840091 0.258553i
\(655\) −148.631 48.2931i −0.226917 0.0737299i
\(656\) −150.275 206.835i −0.229077 0.315298i
\(657\) −3.64272 + 5.01378i −0.00554448 + 0.00763132i
\(658\) −81.8782 251.995i −0.124435 0.382971i
\(659\) 464.630i 0.705053i 0.935802 + 0.352527i \(0.114677\pi\)
−0.935802 + 0.352527i \(0.885323\pi\)
\(660\) 89.6724 + 20.7858i 0.135867 + 0.0314937i
\(661\) 103.487 0.156562 0.0782808 0.996931i \(-0.475057\pi\)
0.0782808 + 0.996931i \(0.475057\pi\)
\(662\) −238.307 + 77.4305i −0.359980 + 0.116964i
\(663\) −37.2376 27.0547i −0.0561653 0.0408065i
\(664\) 323.577 235.093i 0.487315 0.354055i
\(665\) 40.9244 125.952i 0.0615405 0.189402i
\(666\) −7.65362 2.48681i −0.0114919 0.00373395i
\(667\) −242.713 334.065i −0.363887 0.500848i
\(668\) −204.198 + 281.055i −0.305686 + 0.420741i
\(669\) −130.976 403.102i −0.195778 0.602544i
\(670\) 225.430i 0.336463i
\(671\) −115.059 + 496.379i −0.171474 + 0.739760i
\(672\) −127.898 −0.190325
\(673\) −220.508 + 71.6473i −0.327649 + 0.106460i −0.468222 0.883611i \(-0.655105\pi\)
0.140573 + 0.990070i \(0.455105\pi\)
\(674\) −481.513 349.840i −0.714412 0.519050i
\(675\) −109.837 + 79.8016i −0.162722 + 0.118225i
\(676\) 64.2122 197.625i 0.0949884 0.292344i
\(677\) −201.949 65.6172i −0.298300 0.0969235i 0.156043 0.987750i \(-0.450126\pi\)
−0.454343 + 0.890827i \(0.650126\pi\)
\(678\) −384.761 529.578i −0.567494 0.781088i
\(679\) −43.5316 + 59.9161i −0.0641113 + 0.0882416i
\(680\) 50.4429 + 155.247i 0.0741807 + 0.228305i
\(681\) 123.088i 0.180746i
\(682\) 48.1681 41.7973i 0.0706276 0.0612864i
\(683\) −537.182 −0.786504 −0.393252 0.919431i \(-0.628650\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(684\) −3.28868 + 1.06856i −0.00480802 + 0.00156222i
\(685\) −486.375 353.372i −0.710037 0.515872i
\(686\) −277.939 + 201.935i −0.405159 + 0.294365i
\(687\) −328.660 + 1011.51i −0.478399 + 1.47236i
\(688\) 133.941 + 43.5201i 0.194682 + 0.0632559i
\(689\) 42.6304 + 58.6758i 0.0618729 + 0.0851608i
\(690\) −49.5749 + 68.2339i −0.0718476 + 0.0988898i
\(691\) 142.052 + 437.192i 0.205575 + 0.632695i 0.999689 + 0.0249265i \(0.00793517\pi\)
−0.794114 + 0.607769i \(0.792065\pi\)
\(692\) 3.05430i 0.00441373i
\(693\) 2.17827 + 1.31145i 0.00314324 + 0.00189242i
\(694\) −128.041 −0.184497
\(695\) −240.584 + 78.1704i −0.346164 + 0.112475i
\(696\) −1136.63 825.812i −1.63309 1.18651i
\(697\) −184.361 + 133.946i −0.264506 + 0.192175i
\(698\) −215.121 + 662.075i −0.308196 + 0.948531i
\(699\) −541.704 176.010i −0.774970 0.251803i
\(700\) −8.21849 11.3118i −0.0117407 0.0161597i
\(701\) 256.752 353.389i 0.366265 0.504121i −0.585616 0.810589i \(-0.699147\pi\)
0.951881 + 0.306468i \(0.0991472\pi\)
\(702\) 25.5876 + 78.7506i 0.0364496 + 0.112180i
\(703\) 1244.51i 1.77028i
\(704\) −704.047 + 298.118i −1.00007 + 0.423463i
\(705\) 478.541 0.678781
\(706\) 1009.37 327.963i 1.42970 0.464537i
\(707\) −191.182 138.902i −0.270414 0.196467i
\(708\) 109.022 79.2088i 0.153985 0.111877i
\(709\) 401.098 1234.45i 0.565724 1.74112i −0.100067 0.994981i \(-0.531906\pi\)
0.665791 0.746138i \(-0.268094\pi\)
\(710\) 432.066 + 140.387i 0.608543 + 0.197728i
\(711\) 5.22739 + 7.19489i 0.00735217 + 0.0101194i
\(712\) −624.033 + 858.908i −0.876451 + 1.20633i
\(713\) −8.25278 25.3995i −0.0115747 0.0356234i
\(714\) 92.3529i 0.129346i
\(715\) 45.1009 3.90574i 0.0630782 0.00546258i
\(716\) 182.118 0.254355
\(717\) −796.414 + 258.771i −1.11076 + 0.360907i
\(718\) −452.964 329.097i −0.630869 0.458353i
\(719\) 597.870 434.378i 0.831530 0.604142i −0.0884615 0.996080i \(-0.528195\pi\)
0.919992 + 0.391937i \(0.128195\pi\)
\(720\) 0.674117 2.07472i 0.000936273 0.00288155i
\(721\) −416.568 135.351i −0.577764 0.187727i
\(722\) −336.156 462.678i −0.465589 0.640829i
\(723\) 480.901 661.904i 0.665147 0.915496i
\(724\) −61.8753 190.433i −0.0854631 0.263028i
\(725\) 270.511i 0.373119i
\(726\) −592.010 84.2666i −0.815440 0.116070i
\(727\) 721.746 0.992773 0.496386 0.868102i \(-0.334660\pi\)
0.496386 + 0.868102i \(0.334660\pi\)
\(728\) −33.9657 + 11.0361i −0.0466562 + 0.0151595i
\(729\) −596.412 433.319i −0.818123 0.594402i
\(730\) −179.111 + 130.132i −0.245358 + 0.178263i
\(731\) 38.7912 119.387i 0.0530659 0.163320i
\(732\) 164.868 + 53.5690i 0.225230 + 0.0731817i
\(733\) −705.403 970.904i −0.962351 1.32456i −0.945818 0.324699i \(-0.894737\pi\)
−0.0165330 0.999863i \(-0.505263\pi\)
\(734\) 459.303 632.176i 0.625753 0.861275i
\(735\) −90.7500 279.300i −0.123469 0.380000i
\(736\) 146.844i 0.199517i
\(737\) 57.7459 + 666.811i 0.0783527 + 0.904764i
\(738\) 4.67021 0.00632820
\(739\) 7.68044 2.49552i 0.0103930 0.00337689i −0.303816 0.952731i \(-0.598261\pi\)
0.314209 + 0.949354i \(0.398261\pi\)
\(740\) 106.299 + 77.2307i 0.143647 + 0.104366i
\(741\) 118.017 85.7445i 0.159267 0.115715i
\(742\) −44.9687 + 138.399i −0.0606047 + 0.186522i
\(743\) −246.178 79.9879i −0.331329 0.107655i 0.138628 0.990345i \(-0.455731\pi\)
−0.469957 + 0.882689i \(0.655731\pi\)
\(744\) −53.4103 73.5130i −0.0717881 0.0988078i
\(745\) 256.005 352.361i 0.343631 0.472967i
\(746\) −26.0290 80.1089i −0.0348914 0.107385i
\(747\) 4.76430i 0.00637791i
\(748\) 45.1230 + 106.564i 0.0603249 + 0.142466i
\(749\) 342.097 0.456739
\(750\) −52.5485 + 17.0740i −0.0700647 + 0.0227654i
\(751\) 381.165 + 276.932i 0.507543 + 0.368751i 0.811891 0.583810i \(-0.198439\pi\)
−0.304348 + 0.952561i \(0.598439\pi\)
\(752\) −546.051 + 396.730i −0.726132 + 0.527566i
\(753\) 110.386 339.732i 0.146595 0.451172i
\(754\) −156.908 50.9826i −0.208101 0.0676162i
\(755\) 185.398 + 255.179i 0.245561 + 0.337985i
\(756\) 44.6318 61.4305i 0.0590368 0.0812572i
\(757\) 268.783 + 827.228i 0.355063 + 1.09277i 0.955973 + 0.293455i \(0.0948050\pi\)
−0.600910 + 0.799317i \(0.705195\pi\)
\(758\) 973.911i 1.28484i
\(759\) −129.161 + 214.532i −0.170173 + 0.282650i
\(760\) −517.346 −0.680718
\(761\) 614.545 199.678i 0.807549 0.262389i 0.123990 0.992284i \(-0.460431\pi\)
0.683559 + 0.729895i \(0.260431\pi\)
\(762\) −90.0433 65.4203i −0.118167 0.0858534i
\(763\) −64.8698 + 47.1306i −0.0850193 + 0.0617702i
\(764\) 28.4149 87.4521i 0.0371923 0.114466i
\(765\) −1.84928 0.600867i −0.00241736 0.000785447i
\(766\) −32.8751 45.2487i −0.0429179 0.0590714i
\(767\) 38.9545 53.6162i 0.0507881 0.0699038i
\(768\) 197.908 + 609.097i 0.257692 + 0.793096i
\(769\) 152.670i 0.198530i 0.995061 + 0.0992650i \(0.0316492\pi\)
−0.995061 + 0.0992650i \(0.968351\pi\)
\(770\) 59.5300 + 68.6036i 0.0773117 + 0.0890955i
\(771\) −109.276 −0.141733
\(772\) −314.444 + 102.169i −0.407311 + 0.132343i
\(773\) 579.036 + 420.694i 0.749076 + 0.544235i 0.895540 0.444981i \(-0.146789\pi\)
−0.146464 + 0.989216i \(0.546789\pi\)
\(774\) −2.08130 + 1.51215i −0.00268901 + 0.00195368i
\(775\) 5.40644 16.6393i 0.00697606 0.0214701i
\(776\) 275.152 + 89.4023i 0.354577 + 0.115209i
\(777\) −182.991 251.866i −0.235510 0.324151i
\(778\) −504.253 + 694.045i −0.648141 + 0.892089i
\(779\) −223.180 686.879i −0.286496 0.881744i
\(780\) 15.4014i 0.0197454i
\(781\) 1313.99 + 304.579i 1.68244 + 0.389986i
\(782\) −106.034 −0.135593
\(783\) 1397.15 453.963i 1.78436 0.579774i
\(784\) 335.104 + 243.467i 0.427428 + 0.310545i
\(785\) −89.0786 + 64.7194i −0.113476 + 0.0824451i
\(786\) 106.733 328.491i 0.135793 0.417927i
\(787\) 582.331 + 189.211i 0.739938 + 0.240421i 0.654646 0.755935i \(-0.272818\pi\)
0.0852922 + 0.996356i \(0.472818\pi\)
\(788\) −161.724 222.594i −0.205233 0.282479i
\(789\) 46.3943 63.8562i 0.0588014 0.0809331i
\(790\) 98.1764 + 302.156i 0.124274 + 0.382476i
\(791\) 295.213i 0.373214i
\(792\) 2.24285 9.67591i 0.00283188 0.0122171i
\(793\) 85.2541 0.107508
\(794\) 135.686 44.0871i 0.170890 0.0555254i
\(795\) −212.627 154.482i −0.267455 0.194318i
\(796\) 109.739 79.7299i 0.137863 0.100163i
\(797\) −35.3761 + 108.877i −0.0443866 + 0.136608i −0.970794 0.239915i \(-0.922880\pi\)
0.926407 + 0.376523i \(0.122880\pi\)
\(798\) 278.369 + 90.4475i 0.348833 + 0.113343i
\(799\) 353.621 + 486.717i 0.442579 + 0.609158i
\(800\) −56.5441 + 77.8263i −0.0706801 + 0.0972828i
\(801\) −3.90795 12.0274i −0.00487884 0.0150155i
\(802\) 267.201i 0.333168i
\(803\) −496.468 + 430.805i −0.618267 + 0.536494i
\(804\) 227.708 0.283219
\(805\) 36.1753 11.7541i 0.0449382 0.0146013i
\(806\) −8.63260 6.27195i −0.0107104 0.00778158i
\(807\) 95.3699 69.2903i 0.118178 0.0858615i
\(808\) −285.268 + 877.966i −0.353055 + 1.08659i
\(809\) 660.065 + 214.468i 0.815902 + 0.265103i 0.687096 0.726567i \(-0.258885\pi\)
0.128807 + 0.991670i \(0.458885\pi\)
\(810\) −174.338 239.955i −0.215232 0.296241i
\(811\) 754.445 1038.40i 0.930266 1.28040i −0.0294904 0.999565i \(-0.509388\pi\)
0.959756 0.280836i \(-0.0906116\pi\)
\(812\) 46.7521 + 143.888i 0.0575764 + 0.177202i
\(813\) 1241.18i 1.52667i
\(814\) −731.252 440.259i −0.898344 0.540859i
\(815\) 559.335 0.686300
\(816\) −223.742 + 72.6981i −0.274193 + 0.0890908i
\(817\) 321.863 + 233.847i 0.393958 + 0.286227i
\(818\) 310.376 225.502i 0.379433 0.275674i
\(819\) 0.131461 0.404594i 0.000160513 0.000494010i
\(820\) −72.5193 23.5629i −0.0884381 0.0287353i
\(821\) −208.579 287.084i −0.254054 0.349676i 0.662872 0.748733i \(-0.269337\pi\)
−0.916926 + 0.399057i \(0.869337\pi\)
\(822\) 780.992 1074.94i 0.950112 1.30772i
\(823\) −199.071 612.677i −0.241884 0.744444i −0.996133 0.0878551i \(-0.971999\pi\)
0.754249 0.656589i \(-0.228001\pi\)
\(824\) 1711.04i 2.07651i
\(825\) −151.062 + 63.9649i −0.183106 + 0.0775332i
\(826\) 132.974 0.160985
\(827\) −693.571 + 225.355i −0.838660 + 0.272497i −0.696688 0.717374i \(-0.745344\pi\)
−0.141971 + 0.989871i \(0.545344\pi\)
\(828\) −0.803487 0.583767i −0.000970395 0.000705033i
\(829\) −899.621 + 653.613i −1.08519 + 0.788435i −0.978580 0.205866i \(-0.933999\pi\)
−0.106608 + 0.994301i \(0.533999\pi\)
\(830\) −52.5944 + 161.869i −0.0633668 + 0.195023i
\(831\) −340.346 110.585i −0.409562 0.133075i
\(832\) 75.1916 + 103.492i 0.0903745 + 0.124390i
\(833\) 217.012 298.691i 0.260518 0.358573i
\(834\) −172.765 531.717i −0.207153 0.637550i
\(835\) 619.123i 0.741465i
\(836\) −365.397 + 31.6434i −0.437078 + 0.0378510i
\(837\) 95.0128 0.113516
\(838\) 674.987 219.317i 0.805474 0.261714i
\(839\) 487.599 + 354.261i 0.581167 + 0.422242i 0.839145 0.543908i \(-0.183056\pi\)
−0.257978 + 0.966151i \(0.583056\pi\)
\(840\) 104.701 76.0699i 0.124644 0.0905594i
\(841\) −644.625 + 1983.95i −0.766498 + 2.35904i
\(842\) 825.794 + 268.317i 0.980753 + 0.318666i
\(843\) 749.438 + 1031.51i 0.889013 + 1.22362i
\(844\) −184.256 + 253.607i −0.218313 + 0.300482i
\(845\) 114.436 + 352.196i 0.135427 + 0.416800i
\(846\) 12.3295i 0.0145739i
\(847\) 193.660 + 187.677i 0.228643 + 0.221578i
\(848\) 370.696 0.437141
\(849\) 576.066 187.175i 0.678523 0.220465i
\(850\) −56.1969 40.8294i −0.0661139 0.0480346i
\(851\) −289.175 + 210.098i −0.339806 + 0.246884i
\(852\) 141.805 436.431i 0.166438 0.512243i
\(853\) −1552.04 504.288i −1.81951 0.591194i −0.999831 0.0183661i \(-0.994154\pi\)
−0.819676 0.572828i \(-0.805846\pi\)
\(854\) 100.545 + 138.388i 0.117734 + 0.162047i
\(855\) 3.62225 4.98559i 0.00423654 0.00583110i
\(856\) −412.965 1270.97i −0.482436 1.48478i
\(857\) 1580.81i 1.84459i −0.386486 0.922295i \(-0.626311\pi\)
0.386486 0.922295i \(-0.373689\pi\)
\(858\) 8.63212 + 99.6780i 0.0100608 + 0.116175i
\(859\) −1222.90 −1.42364 −0.711819 0.702363i \(-0.752128\pi\)
−0.711819 + 0.702363i \(0.752128\pi\)
\(860\) 39.9478 12.9798i 0.0464510 0.0150928i
\(861\) 146.165 + 106.195i 0.169762 + 0.123340i
\(862\) 12.2072 8.86902i 0.0141614 0.0102889i
\(863\) 361.176 1111.58i 0.418512 1.28805i −0.490560 0.871408i \(-0.663208\pi\)
0.909072 0.416640i \(-0.136792\pi\)
\(864\) −496.853 161.437i −0.575061 0.186849i
\(865\) 3.19944 + 4.40365i 0.00369878 + 0.00509093i
\(866\) 191.663 263.801i 0.221320 0.304620i
\(867\) −201.571 620.371i −0.232492 0.715538i
\(868\) 9.78504i 0.0112731i
\(869\) 367.801 + 868.613i 0.423246 + 0.999555i
\(870\) 597.859 0.687195
\(871\) 106.505 34.6055i 0.122279 0.0397308i
\(872\) 253.410 + 184.113i 0.290607 + 0.211139i
\(873\) −2.78806 + 2.02565i −0.00319366 + 0.00232033i
\(874\) 103.846 319.604i 0.118817 0.365680i
\(875\) 23.6986 + 7.70015i 0.0270842 + 0.00880017i
\(876\) 131.447 + 180.921i 0.150054 + 0.206531i
\(877\) 320.830 441.585i 0.365827 0.503517i −0.585934 0.810359i \(-0.699272\pi\)
0.951761 + 0.306842i \(0.0992722\pi\)
\(878\) 24.5931 + 75.6898i 0.0280104 + 0.0862071i
\(879\) 1220.76i 1.38880i
\(880\) 119.344 198.225i 0.135618 0.225256i
\(881\) −445.171 −0.505302 −0.252651 0.967557i \(-0.581302\pi\)
−0.252651 + 0.967557i \(0.581302\pi\)
\(882\) −7.19609 + 2.33815i −0.00815884 + 0.00265097i
\(883\) −499.994 363.267i −0.566244 0.411401i 0.267495 0.963559i \(-0.413804\pi\)
−0.833739 + 0.552159i \(0.813804\pi\)
\(884\) 15.6646 11.3810i 0.0177201 0.0128744i
\(885\) −74.2131 + 228.404i −0.0838566 + 0.258084i
\(886\) 198.810 + 64.5973i 0.224391 + 0.0729089i
\(887\) −717.869 988.062i −0.809323 1.11394i −0.991427 0.130658i \(-0.958291\pi\)
0.182105 0.983279i \(-0.441709\pi\)
\(888\) −714.843 + 983.897i −0.805004 + 1.10799i
\(889\) 15.5110 + 47.7379i 0.0174477 + 0.0536984i
\(890\) 451.779i 0.507616i
\(891\) −577.149 665.117i −0.647754 0.746484i
\(892\) 178.297 0.199885
\(893\) −1813.38 + 589.203i −2.03066 + 0.659802i
\(894\) 778.756 + 565.799i 0.871092 + 0.632885i
\(895\) −262.576 + 190.773i −0.293381 + 0.213154i
\(896\) −26.3125 + 80.9815i −0.0293666 + 0.0903812i
\(897\) 39.8474 + 12.9472i 0.0444229 + 0.0144339i
\(898\) −43.0414 59.2415i −0.0479303 0.0659704i
\(899\) −111.274 + 153.155i −0.123775 + 0.170362i
\(900\) −0.201055 0.618784i −0.000223394 0.000687537i
\(901\) 330.416i 0.366721i
\(902\) 482.551 + 111.854i 0.534979 + 0.124007i
\(903\) −99.5238 −0.110215
\(904\) 1096.79 356.368i 1.21326 0.394212i
\(905\) 288.693 + 209.748i 0.318998 + 0.231766i
\(906\) −563.974 + 409.751i −0.622488 + 0.452264i
\(907\) 309.050 951.157i 0.340738 1.04868i −0.623088 0.782152i \(-0.714122\pi\)
0.963826 0.266532i \(-0.0858779\pi\)
\(908\) −49.2447 16.0006i −0.0542343 0.0176218i
\(909\) −6.46351 8.89625i −0.00711057 0.00978686i
\(910\) 8.93285 12.2950i 0.00981632 0.0135110i
\(911\) 390.823 + 1202.83i 0.429004 + 1.32034i 0.899107 + 0.437728i \(0.144217\pi\)
−0.470103 + 0.882611i \(0.655783\pi\)
\(912\) 745.597i 0.817541i
\(913\) −114.107 + 492.273i −0.124981 + 0.539182i
\(914\) −876.872 −0.959378
\(915\) −293.820 + 95.4678i −0.321115 + 0.104336i
\(916\) −361.959 262.979i −0.395152 0.287095i
\(917\) −126.019 + 91.5584i −0.137426 + 0.0998456i
\(918\) 116.571 358.768i 0.126983 0.390815i
\(919\) −410.290 133.311i −0.446452 0.145061i 0.0771583 0.997019i \(-0.475415\pi\)
−0.523611 + 0.851958i \(0.675415\pi\)
\(920\) −87.3384 120.211i −0.0949331 0.130664i
\(921\) −961.379 + 1323.22i −1.04384 + 1.43673i
\(922\) −132.464 407.681i −0.143670 0.442171i
\(923\) 225.680i 0.244507i
\(924\) 69.2968 60.1315i 0.0749965 0.0650774i
\(925\) −234.161 −0.253147
\(926\) −425.086 + 138.119i −0.459057 + 0.149156i
\(927\) −16.4891 11.9800i −0.0177876 0.0129234i
\(928\) 842.115 611.832i 0.907451 0.659302i
\(929\) −394.187 + 1213.18i −0.424313 + 1.30590i 0.479338 + 0.877630i \(0.340877\pi\)
−0.903651 + 0.428270i \(0.859123\pi\)
\(930\) 36.7747 + 11.9488i 0.0395427 + 0.0128482i
\(931\) 687.776 + 946.642i 0.738749 + 1.01680i
\(932\) 140.835 193.843i 0.151111 0.207986i
\(933\) −42.6080 131.134i −0.0456677 0.140551i
\(934\) 211.853i 0.226824i
\(935\) −176.686 106.376i −0.188969 0.113771i
\(936\) −1.66186 −0.00177549
\(937\) −802.209 + 260.654i −0.856146 + 0.278179i −0.704018 0.710182i \(-0.748613\pi\)
−0.152128 + 0.988361i \(0.548613\pi\)
\(938\) 181.780 + 132.071i 0.193796 + 0.140801i
\(939\) 2.80351 2.03687i 0.00298563 0.00216919i
\(940\) −62.2068 + 191.453i −0.0661775 + 0.203673i
\(941\) −1486.45 482.975i −1.57964 0.513258i −0.617679 0.786430i \(-0.711927\pi\)
−0.961965 + 0.273172i \(0.911927\pi\)
\(942\) −143.037 196.874i −0.151844 0.208995i
\(943\) 121.926 167.817i 0.129296 0.177961i
\(944\) −104.674 322.153i −0.110883 0.341263i
\(945\) 135.322i 0.143198i
\(946\) −251.268 + 106.395i −0.265611 + 0.112469i
\(947\) −986.562 −1.04178 −0.520888 0.853625i \(-0.674399\pi\)
−0.520888 + 0.853625i \(0.674399\pi\)
\(948\) 305.209 99.1684i 0.321950 0.104608i
\(949\) 88.9762 + 64.6450i 0.0937579 + 0.0681191i
\(950\) 178.105 129.401i 0.187479 0.136211i
\(951\) −108.541 + 334.055i −0.114134 + 0.351267i
\(952\) 154.739 + 50.2779i 0.162541 + 0.0528129i
\(953\) 995.156 + 1369.71i 1.04424 + 1.43727i 0.893702 + 0.448661i \(0.148099\pi\)
0.150533 + 0.988605i \(0.451901\pi\)
\(954\) −3.98020 + 5.47828i −0.00417212 + 0.00574243i
\(955\) 50.6396 + 155.853i 0.0530257 + 0.163196i
\(956\) 352.265i 0.368478i
\(957\) 1768.44 153.147i 1.84790 0.160028i
\(958\) −833.730 −0.870282
\(959\) −569.898 + 185.171i −0.594263 + 0.193088i
\(960\) −375.032 272.476i −0.390658 0.283830i
\(961\) 767.560 557.665i 0.798710 0.580296i
\(962\) −44.1318 + 135.824i −0.0458751 + 0.141189i
\(963\) 15.1396 + 4.91916i 0.0157213 + 0.00510817i
\(964\) 202.299 + 278.440i 0.209853 + 0.288838i
\(965\) 346.338 476.693i 0.358899 0.493982i
\(966\) 25.9778 + 79.9514i 0.0268921 + 0.0827654i
\(967\) 1364.74i 1.41132i −0.708552 0.705658i \(-0.750651\pi\)
0.708552 0.705658i \(-0.249349\pi\)
\(968\) 463.487 946.050i 0.478808 0.977324i
\(969\) −664.580 −0.685841
\(970\) −117.087 + 38.0439i −0.120708 + 0.0392206i
\(971\) 66.9491 + 48.6413i 0.0689486 + 0.0500941i 0.621726 0.783235i \(-0.286432\pi\)
−0.552777 + 0.833329i \(0.686432\pi\)
\(972\) 5.68450 4.13003i 0.00584825 0.00424900i
\(973\) −77.9147 + 239.797i −0.0800767 + 0.246451i
\(974\) 323.620 + 105.151i 0.332259 + 0.107957i
\(975\) 16.1333 + 22.2056i 0.0165470 + 0.0227750i
\(976\) 256.124 352.525i 0.262422 0.361193i
\(977\) 392.445 + 1207.82i 0.401684 + 1.23626i 0.923633 + 0.383279i \(0.125205\pi\)
−0.521949 + 0.852977i \(0.674795\pi\)
\(978\) 1236.19i 1.26400i
\(979\) −115.727 1336.34i −0.118209 1.36500i
\(980\) 123.538 0.126059
\(981\) −3.54854 + 1.15299i −0.00361727 + 0.00117532i
\(982\) −128.600 93.4336i −0.130958 0.0951463i
\(983\) 303.303 220.362i 0.308548 0.224173i −0.422725 0.906258i \(-0.638926\pi\)
0.731273 + 0.682085i \(0.238926\pi\)
\(984\) 218.097 671.234i 0.221644 0.682149i
\(985\) 466.343 + 151.524i 0.473444 + 0.153831i
\(986\) 441.792 + 608.075i 0.448065 + 0.616709i
\(987\) 280.359 385.881i 0.284052 0.390964i
\(988\) 18.9630 + 58.3621i 0.0191933 + 0.0590709i
\(989\) 114.267i 0.115538i
\(990\) 1.64804 + 3.89208i 0.00166469 + 0.00393139i
\(991\) 885.269 0.893309 0.446655 0.894707i \(-0.352615\pi\)
0.446655 + 0.894707i \(0.352615\pi\)
\(992\) 64.0271 20.8037i 0.0645435 0.0209715i
\(993\) −364.920 265.130i −0.367492 0.266999i
\(994\) 366.335 266.158i 0.368546 0.267764i
\(995\) −74.7014 + 229.907i −0.0750768 + 0.231063i
\(996\) 163.505 + 53.1259i 0.164161 + 0.0533392i
\(997\) −43.8072 60.2954i −0.0439390 0.0604769i 0.786482 0.617613i \(-0.211900\pi\)
−0.830421 + 0.557136i \(0.811900\pi\)
\(998\) −220.834 + 303.952i −0.221277 + 0.304561i
\(999\) −392.961 1209.41i −0.393355 1.21062i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.c.6.3 12
5.2 odd 4 275.3.q.e.149.4 24
5.3 odd 4 275.3.q.e.149.3 24
5.4 even 2 275.3.x.g.226.1 12
11.2 odd 10 inner 55.3.i.c.46.3 yes 12
11.3 even 5 605.3.c.c.241.6 12
11.8 odd 10 605.3.c.c.241.7 12
55.2 even 20 275.3.q.e.24.3 24
55.13 even 20 275.3.q.e.24.4 24
55.24 odd 10 275.3.x.g.101.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.c.6.3 12 1.1 even 1 trivial
55.3.i.c.46.3 yes 12 11.2 odd 10 inner
275.3.q.e.24.3 24 55.2 even 20
275.3.q.e.24.4 24 55.13 even 20
275.3.q.e.149.3 24 5.3 odd 4
275.3.q.e.149.4 24 5.2 odd 4
275.3.x.g.101.1 12 55.24 odd 10
275.3.x.g.226.1 12 5.4 even 2
605.3.c.c.241.6 12 11.3 even 5
605.3.c.c.241.7 12 11.8 odd 10