L(s) = 1 | + (−3.40 − 1.10i)2-s + (−3.07 + 2.23i)3-s + (7.11 + 5.16i)4-s + (−0.690 − 2.12i)5-s + (12.9 − 4.19i)6-s + (4.78 − 6.58i)7-s + (−10.0 − 13.8i)8-s + (1.67 − 5.15i)9-s + 7.99i·10-s + (7.96 − 7.58i)11-s − 33.3·12-s + (20.9 + 6.79i)13-s + (−23.5 + 17.1i)14-s + (6.87 + 4.99i)15-s + (8.07 + 24.8i)16-s + (0.261 − 0.0849i)17-s + ⋯ |
L(s) = 1 | + (−1.70 − 0.552i)2-s + (−1.02 + 0.744i)3-s + (1.77 + 1.29i)4-s + (−0.138 − 0.425i)5-s + (2.15 − 0.699i)6-s + (0.683 − 0.940i)7-s + (−1.25 − 1.73i)8-s + (0.186 − 0.573i)9-s + 0.799i·10-s + (0.724 − 0.689i)11-s − 2.78·12-s + (1.60 + 0.522i)13-s + (−1.68 + 1.22i)14-s + (0.458 + 0.332i)15-s + (0.504 + 1.55i)16-s + (0.0153 − 0.00499i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.673 + 0.739i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.673 + 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.388122 - 0.171476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.388122 - 0.171476i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.690 + 2.12i)T \) |
| 11 | \( 1 + (-7.96 + 7.58i)T \) |
good | 2 | \( 1 + (3.40 + 1.10i)T + (3.23 + 2.35i)T^{2} \) |
| 3 | \( 1 + (3.07 - 2.23i)T + (2.78 - 8.55i)T^{2} \) |
| 7 | \( 1 + (-4.78 + 6.58i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-20.9 - 6.79i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-0.261 + 0.0849i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (9.69 + 13.3i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 1.44T + 529T^{2} \) |
| 29 | \( 1 + (-24.5 + 33.7i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-0.152 + 0.468i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (-17.6 - 12.8i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-29.5 - 40.6i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 62.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (10.9 - 7.94i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-1.14 + 3.52i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-7.28 - 5.29i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (78.3 - 25.4i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 36.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-29.6 - 91.1i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-54.0 + 74.3i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (32.6 + 10.6i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (16.9 - 5.50i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 24.9T + 7.92e3T^{2} \) |
| 97 | \( 1 + (29.0 - 89.3i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.69810703907578137543848776165, −13.66894116987764217937985084180, −11.71560414705074123990276664077, −11.16205385078750279463003328156, −10.44823560711641212058195469383, −9.109331832553966072694825695874, −8.088615656008583006135202029825, −6.38893402101444723127795765848, −4.19768308509162719413946072869, −0.965149467627808304917763812519,
1.45601656647546670670135299283, 5.85631338385764292429693020540, 6.67457219709163743986137057019, 7.985209103822211211302269407054, 9.038989031574201683906556744726, 10.63931575582013890082092095722, 11.40185817597018250635761183582, 12.47074995199870384239491982284, 14.60538415604074023142527429508, 15.59219435584751185382630967461