Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [55,3,Mod(6,55)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(55, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("55.6");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 55.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 |
|
−3.40164 | + | 1.10526i | −3.07249 | − | 2.23230i | 7.11349 | − | 5.16825i | −0.690983 | + | 2.12663i | 12.9188 | + | 4.19757i | 4.78108 | + | 6.58059i | −10.0760 | + | 13.8684i | 1.67591 | + | 5.15793i | − | 7.99774i | |||||||||||||||||||||||||||||||||||||
6.2 | 0.289909 | − | 0.0941972i | −4.17687 | − | 3.03467i | −3.16089 | + | 2.29652i | −0.690983 | + | 2.12663i | −1.49677 | − | 0.486330i | −5.94293 | − | 8.17974i | −1.41674 | + | 1.94998i | 5.45583 | + | 16.7913i | 0.681617i | |||||||||||||||||||||||||||||||||||||||
6.3 | 2.68468 | − | 0.872305i | 0.0862408 | + | 0.0626576i | 3.21052 | − | 2.33258i | −0.690983 | + | 2.12663i | 0.286186 | + | 0.0929874i | −1.76520 | − | 2.42959i | −0.0523905 | + | 0.0721094i | −2.77764 | − | 8.54870i | 6.31206i | |||||||||||||||||||||||||||||||||||||||
41.1 | 0.0936958 | + | 0.128961i | −0.602908 | − | 1.85556i | 1.22822 | − | 3.78006i | −1.80902 | − | 1.31433i | 0.182805 | − | 0.251610i | 0.0125693 | + | 0.00408401i | 1.20897 | − | 0.392819i | 4.20154 | − | 3.05260i | − | 0.356440i | ||||||||||||||||||||||||||||||||||||||
41.2 | 0.759198 | + | 1.04495i | 1.55259 | + | 4.77837i | 0.720536 | − | 2.21758i | −1.80902 | − | 1.31433i | −3.81442 | + | 5.25010i | −3.31915 | − | 1.07846i | 7.77792 | − | 2.52720i | −13.1411 | + | 9.54757i | − | 2.88816i | ||||||||||||||||||||||||||||||||||||||
41.3 | 2.07416 | + | 2.85483i | −0.286558 | − | 0.881935i | −2.61187 | + | 8.03851i | −1.80902 | − | 1.31433i | 1.92341 | − | 2.64735i | 3.73363 | + | 1.21313i | −14.9418 | + | 4.85489i | 6.58546 | − | 4.78462i | − | 7.89056i | ||||||||||||||||||||||||||||||||||||||
46.1 | −3.40164 | − | 1.10526i | −3.07249 | + | 2.23230i | 7.11349 | + | 5.16825i | −0.690983 | − | 2.12663i | 12.9188 | − | 4.19757i | 4.78108 | − | 6.58059i | −10.0760 | − | 13.8684i | 1.67591 | − | 5.15793i | 7.99774i | |||||||||||||||||||||||||||||||||||||||
46.2 | 0.289909 | + | 0.0941972i | −4.17687 | + | 3.03467i | −3.16089 | − | 2.29652i | −0.690983 | − | 2.12663i | −1.49677 | + | 0.486330i | −5.94293 | + | 8.17974i | −1.41674 | − | 1.94998i | 5.45583 | − | 16.7913i | − | 0.681617i | ||||||||||||||||||||||||||||||||||||||
46.3 | 2.68468 | + | 0.872305i | 0.0862408 | − | 0.0626576i | 3.21052 | + | 2.33258i | −0.690983 | − | 2.12663i | 0.286186 | − | 0.0929874i | −1.76520 | + | 2.42959i | −0.0523905 | − | 0.0721094i | −2.77764 | + | 8.54870i | − | 6.31206i | ||||||||||||||||||||||||||||||||||||||
51.1 | 0.0936958 | − | 0.128961i | −0.602908 | + | 1.85556i | 1.22822 | + | 3.78006i | −1.80902 | + | 1.31433i | 0.182805 | + | 0.251610i | 0.0125693 | − | 0.00408401i | 1.20897 | + | 0.392819i | 4.20154 | + | 3.05260i | 0.356440i | |||||||||||||||||||||||||||||||||||||||
51.2 | 0.759198 | − | 1.04495i | 1.55259 | − | 4.77837i | 0.720536 | + | 2.21758i | −1.80902 | + | 1.31433i | −3.81442 | − | 5.25010i | −3.31915 | + | 1.07846i | 7.77792 | + | 2.52720i | −13.1411 | − | 9.54757i | 2.88816i | |||||||||||||||||||||||||||||||||||||||
51.3 | 2.07416 | − | 2.85483i | −0.286558 | + | 0.881935i | −2.61187 | − | 8.03851i | −1.80902 | + | 1.31433i | 1.92341 | + | 2.64735i | 3.73363 | − | 1.21313i | −14.9418 | − | 4.85489i | 6.58546 | + | 4.78462i | 7.89056i | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.d | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 55.3.i.d | ✓ | 12 |
5.b | even | 2 | 1 | 275.3.x.f | 12 | ||
5.c | odd | 4 | 2 | 275.3.q.f | 24 | ||
11.c | even | 5 | 1 | 605.3.c.d | 12 | ||
11.d | odd | 10 | 1 | inner | 55.3.i.d | ✓ | 12 |
11.d | odd | 10 | 1 | 605.3.c.d | 12 | ||
55.h | odd | 10 | 1 | 275.3.x.f | 12 | ||
55.l | even | 20 | 2 | 275.3.q.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.3.i.d | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
55.3.i.d | ✓ | 12 | 11.d | odd | 10 | 1 | inner |
275.3.q.f | 24 | 5.c | odd | 4 | 2 | ||
275.3.q.f | 24 | 55.l | even | 20 | 2 | ||
275.3.x.f | 12 | 5.b | even | 2 | 1 | ||
275.3.x.f | 12 | 55.h | odd | 10 | 1 | ||
605.3.c.d | 12 | 11.c | even | 5 | 1 | ||
605.3.c.d | 12 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .