L(s) = 1 | + (2.68 − 0.872i)2-s + (0.0862 + 0.0626i)3-s + (3.21 − 2.33i)4-s + (−0.690 + 2.12i)5-s + (0.286 + 0.0929i)6-s + (−1.76 − 2.42i)7-s + (−0.0523 + 0.0721i)8-s + (−2.77 − 8.54i)9-s + 6.31i·10-s + (−4.57 + 10.0i)11-s + 0.423·12-s + (0.925 − 0.300i)13-s + (−6.85 − 4.98i)14-s + (−0.192 + 0.140i)15-s + (−4.98 + 15.3i)16-s + (4.85 + 1.57i)17-s + ⋯ |
L(s) = 1 | + (1.34 − 0.436i)2-s + (0.0287 + 0.0208i)3-s + (0.802 − 0.583i)4-s + (−0.138 + 0.425i)5-s + (0.0476 + 0.0154i)6-s + (−0.252 − 0.347i)7-s + (−0.00654 + 0.00901i)8-s + (−0.308 − 0.949i)9-s + 0.631i·10-s + (−0.416 + 0.909i)11-s + 0.0352·12-s + (0.0711 − 0.0231i)13-s + (−0.489 − 0.355i)14-s + (−0.0128 + 0.00934i)15-s + (−0.311 + 0.958i)16-s + (0.285 + 0.0928i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.918+0.396i)Λ(3−s)
Λ(s)=(=(55s/2ΓC(s+1)L(s)(0.918+0.396i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.918+0.396i
|
Analytic conductor: |
1.49864 |
Root analytic conductor: |
1.22419 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(6,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1), 0.918+0.396i)
|
Particular Values
L(23) |
≈ |
1.94267−0.401101i |
L(21) |
≈ |
1.94267−0.401101i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.690−2.12i)T |
| 11 | 1+(4.57−10.0i)T |
good | 2 | 1+(−2.68+0.872i)T+(3.23−2.35i)T2 |
| 3 | 1+(−0.0862−0.0626i)T+(2.78+8.55i)T2 |
| 7 | 1+(1.76+2.42i)T+(−15.1+46.6i)T2 |
| 13 | 1+(−0.925+0.300i)T+(136.−99.3i)T2 |
| 17 | 1+(−4.85−1.57i)T+(233.+169.i)T2 |
| 19 | 1+(−7.85+10.8i)T+(−111.−343.i)T2 |
| 23 | 1−24.5T+529T2 |
| 29 | 1+(19.2+26.5i)T+(−259.+799.i)T2 |
| 31 | 1+(3.40+10.4i)T+(−777.+564.i)T2 |
| 37 | 1+(7.65−5.56i)T+(423.−1.30e3i)T2 |
| 41 | 1+(−43.5+59.9i)T+(−519.−1.59e3i)T2 |
| 43 | 1−52.1iT−1.84e3T2 |
| 47 | 1+(−33.4−24.2i)T+(682.+2.10e3i)T2 |
| 53 | 1+(−19.3−59.4i)T+(−2.27e3+1.65e3i)T2 |
| 59 | 1+(57.2−41.5i)T+(1.07e3−3.31e3i)T2 |
| 61 | 1+(69.3+22.5i)T+(3.01e3+2.18e3i)T2 |
| 67 | 1+116.T+4.48e3T2 |
| 71 | 1+(38.9−119.i)T+(−4.07e3−2.96e3i)T2 |
| 73 | 1+(11.6+16.0i)T+(−1.64e3+5.06e3i)T2 |
| 79 | 1+(−31.0+10.1i)T+(5.04e3−3.66e3i)T2 |
| 83 | 1+(−138.−44.9i)T+(5.57e3+4.04e3i)T2 |
| 89 | 1+94.7T+7.92e3T2 |
| 97 | 1+(42.4+130.i)T+(−7.61e3+5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.88508264713138928928529879345, −13.77968629157741768673247330860, −12.77587425086690289790081635571, −11.86118928720529937392493138104, −10.74395106275120031756254568431, −9.263255174924732416231533400933, −7.27933255900320559353014299325, −5.85697510858194832709784940879, −4.27501513238284849703587537622, −2.91575294438019046833768318308,
3.20519655280078667862854042591, 4.97712269824737475144473752257, 5.88650060530106413442106181285, 7.57144632210813432911226398510, 9.025464779849471229055407762960, 10.83722752289923113190338068657, 12.13579305330249568051728984930, 13.15418370192447636378238968768, 13.89814204294550359394449360438, 14.98092410464650716682704554958