Properties

Label 2-55-1.1-c5-0-5
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $8.82111$
Root an. cond. $2.97003$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.74·2-s + 13.5·3-s − 17.9·4-s − 25·5-s − 50.6·6-s + 134.·7-s + 187.·8-s − 59.8·9-s + 93.5·10-s + 121·11-s − 243.·12-s + 386.·13-s − 504.·14-s − 338.·15-s − 124.·16-s + 2.02e3·17-s + 223.·18-s + 486.·19-s + 449.·20-s + 1.82e3·21-s − 452.·22-s + 4.78e3·23-s + 2.53e3·24-s + 625·25-s − 1.44e3·26-s − 4.09e3·27-s − 2.42e3·28-s + ⋯
L(s)  = 1  − 0.661·2-s + 0.868·3-s − 0.562·4-s − 0.447·5-s − 0.574·6-s + 1.03·7-s + 1.03·8-s − 0.246·9-s + 0.295·10-s + 0.301·11-s − 0.488·12-s + 0.634·13-s − 0.687·14-s − 0.388·15-s − 0.121·16-s + 1.70·17-s + 0.162·18-s + 0.309·19-s + 0.251·20-s + 0.902·21-s − 0.199·22-s + 1.88·23-s + 0.897·24-s + 0.200·25-s − 0.419·26-s − 1.08·27-s − 0.584·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(8.82111\)
Root analytic conductor: \(2.97003\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.462014667\)
\(L(\frac12)\) \(\approx\) \(1.462014667\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
good2 \( 1 + 3.74T + 32T^{2} \)
3 \( 1 - 13.5T + 243T^{2} \)
7 \( 1 - 134.T + 1.68e4T^{2} \)
13 \( 1 - 386.T + 3.71e5T^{2} \)
17 \( 1 - 2.02e3T + 1.41e6T^{2} \)
19 \( 1 - 486.T + 2.47e6T^{2} \)
23 \( 1 - 4.78e3T + 6.43e6T^{2} \)
29 \( 1 + 5.40e3T + 2.05e7T^{2} \)
31 \( 1 - 1.03e4T + 2.86e7T^{2} \)
37 \( 1 + 1.53e4T + 6.93e7T^{2} \)
41 \( 1 + 5.35e3T + 1.15e8T^{2} \)
43 \( 1 + 1.28e3T + 1.47e8T^{2} \)
47 \( 1 - 1.64e4T + 2.29e8T^{2} \)
53 \( 1 + 947.T + 4.18e8T^{2} \)
59 \( 1 - 2.04e3T + 7.14e8T^{2} \)
61 \( 1 + 1.18e4T + 8.44e8T^{2} \)
67 \( 1 + 4.38e4T + 1.35e9T^{2} \)
71 \( 1 - 2.46e4T + 1.80e9T^{2} \)
73 \( 1 + 7.42e3T + 2.07e9T^{2} \)
79 \( 1 - 6.73e3T + 3.07e9T^{2} \)
83 \( 1 - 1.02e5T + 3.93e9T^{2} \)
89 \( 1 - 1.41e5T + 5.58e9T^{2} \)
97 \( 1 + 4.19e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30716047757108380500227401766, −13.50117971011798845824042187233, −11.88093342361022920910353239985, −10.63099511685733417447466493438, −9.203120664614510611354125123630, −8.371968956774877811136417457034, −7.55783307831176245375942467026, −5.11994649061266818245715194219, −3.47888678192176811085009648830, −1.20413217100725281316999819610, 1.20413217100725281316999819610, 3.47888678192176811085009648830, 5.11994649061266818245715194219, 7.55783307831176245375942467026, 8.371968956774877811136417457034, 9.203120664614510611354125123630, 10.63099511685733417447466493438, 11.88093342361022920910353239985, 13.50117971011798845824042187233, 14.30716047757108380500227401766

Graph of the $Z$-function along the critical line