Properties

Label 55.6.a.d
Level $55$
Weight $6$
Character orbit 55.a
Self dual yes
Analytic conductor $8.821$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,6,Mod(1,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 55.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.82111008971\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + ( - \beta_{3} - \beta_1) q^{3} + ( - \beta_{4} + \beta_{2} - \beta_1 + 20) q^{4} - 25 q^{5} + ( - \beta_{5} - 2 \beta_{3} + \cdots + 55) q^{6} + (4 \beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots - 10) q^{7}+ \cdots + (968 \beta_{5} + 726 \beta_{4} + \cdots + 17545) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 115 q^{4} - 150 q^{5} + 325 q^{6} - 66 q^{7} + 249 q^{8} + 832 q^{9} - 75 q^{10} + 726 q^{11} + 1301 q^{12} - 972 q^{13} + 2017 q^{14} + 6675 q^{16} + 712 q^{17} + 5920 q^{18} + 610 q^{19}+ \cdots + 100672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 135\nu^{3} - 120\nu^{2} + 1946\nu + 804 ) / 78 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 8\nu^{4} - 153\nu^{3} - 1218\nu^{2} + 2930\nu + 17668 ) / 312 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 135\nu^{3} - 198\nu^{2} + 2024\nu + 4782 ) / 78 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - \nu^{4} + 147\nu^{3} + 267\nu^{2} - 3044\nu - 3692 ) / 78 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{2} + \beta _1 + 51 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 8\beta_{5} + \beta_{4} + 4\beta_{3} + 6\beta_{2} + 99\beta _1 + 29 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 18\beta_{5} - 135\beta_{4} + 48\beta_{3} + 141\beta_{2} + 237\beta _1 + 4957 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 1080\beta_{5} + 15\beta_{4} + 540\beta_{3} + 1008\beta_{2} + 11539\beta _1 + 9231 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
11.5183
4.74230
4.01414
−1.73538
−5.32252
−10.2169
−10.5183 −10.1483 78.6353 −25.0000 106.743 −228.119 −490.525 −140.013 262.958
1.2 −3.74230 13.5338 −17.9952 −25.0000 −50.6477 134.766 187.097 −59.8351 93.5576
1.3 −3.01414 −13.7145 −22.9149 −25.0000 41.3374 −131.565 165.521 −54.9135 75.3536
1.4 2.73538 −29.5841 −24.5177 −25.0000 −80.9238 175.856 −154.598 632.218 −68.3846
1.5 6.32252 28.4424 7.97424 −25.0000 179.828 115.579 −151.903 565.969 −158.063
1.6 11.2169 11.4706 93.8183 −25.0000 128.664 −132.518 693.408 −111.426 −280.422
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.6.a.d 6
3.b odd 2 1 495.6.a.l 6
4.b odd 2 1 880.6.a.u 6
5.b even 2 1 275.6.a.f 6
5.c odd 4 2 275.6.b.f 12
11.b odd 2 1 605.6.a.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.6.a.d 6 1.a even 1 1 trivial
275.6.a.f 6 5.b even 2 1
275.6.b.f 12 5.c odd 4 2
495.6.a.l 6 3.b odd 2 1
605.6.a.e 6 11.b odd 2 1
880.6.a.u 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} - 149T_{2}^{4} + 309T_{2}^{3} + 4034T_{2}^{2} - 1868T_{2} - 23016 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(55))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots - 23016 \) Copy content Toggle raw display
$3$ \( T^{6} - 1145 T^{4} + \cdots - 18180288 \) Copy content Toggle raw display
$5$ \( (T + 25)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 10894071216816 \) Copy content Toggle raw display
$11$ \( (T - 121)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 24\!\cdots\!32 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 20\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 28\!\cdots\!68 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 22\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 80\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 70\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 18\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 84\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 26\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 10\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 23\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 30\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 41\!\cdots\!28 \) Copy content Toggle raw display
show more
show less