L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (1.80 − 1.31i)7-s + (0.809 + 0.587i)8-s + (−0.809 − 2.48i)9-s + (−1.23 − 3.07i)11-s − 0.618·12-s + (1.30 + 4.02i)13-s + (−1.80 − 1.31i)14-s + (0.309 − 0.951i)16-s + (0.809 − 2.48i)17-s + (−2.11 + 1.53i)18-s + (−0.309 − 0.224i)19-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (0.288 + 0.209i)3-s + (−0.404 + 0.293i)4-s + (0.0779 − 0.239i)6-s + (0.683 − 0.496i)7-s + (0.286 + 0.207i)8-s + (−0.269 − 0.829i)9-s + (−0.372 − 0.927i)11-s − 0.178·12-s + (0.363 + 1.11i)13-s + (−0.483 − 0.351i)14-s + (0.0772 − 0.237i)16-s + (0.196 − 0.603i)17-s + (−0.499 + 0.362i)18-s + (−0.0708 − 0.0515i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.985172 - 0.963747i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.985172 - 0.963747i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (1.23 + 3.07i)T \) |
good | 3 | \( 1 + (-0.5 - 0.363i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + (-1.80 + 1.31i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 4.02i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 2.48i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.224i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 2.85T + 23T^{2} \) |
| 29 | \( 1 + (-7.66 + 5.56i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (1.78 + 5.48i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-1.73 + 1.26i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (7.85 + 5.70i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 0.527T + 43T^{2} \) |
| 47 | \( 1 + (-3.42 - 2.48i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.11 - 3.44i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-2.04 + 1.48i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.690 - 2.12i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 6.32T + 67T^{2} \) |
| 71 | \( 1 + (4.57 - 14.0i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (12.0 - 8.73i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.83 - 5.65i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.78 + 8.55i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 9.18T + 89T^{2} \) |
| 97 | \( 1 + (-3.70 - 11.4i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63676265253664432663881169786, −9.694459773198906708735256592731, −8.867212636620179763009773907126, −8.225266920821470604339491579037, −7.08599327818047503478115493529, −5.92266679071401456802796133195, −4.59240063397054813432271120616, −3.71650288545644717929278058225, −2.56456482855910133228178817823, −0.909834619166162361229114892992,
1.66898707992793268170819857843, 3.07826092333088880951295018187, 4.84592775826124543848570205482, 5.31602000236144683602024260028, 6.58848741665435749858409045822, 7.63046634759462610059548962024, 8.259295774337207122779362967891, 8.871959323442526062742066184177, 10.25790449642380175191092203002, 10.67131162618513741580798975928