L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (1.80 − 1.31i)7-s + (0.809 + 0.587i)8-s + (−0.809 − 2.48i)9-s + (−1.23 − 3.07i)11-s − 0.618·12-s + (1.30 + 4.02i)13-s + (−1.80 − 1.31i)14-s + (0.309 − 0.951i)16-s + (0.809 − 2.48i)17-s + (−2.11 + 1.53i)18-s + (−0.309 − 0.224i)19-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (0.288 + 0.209i)3-s + (−0.404 + 0.293i)4-s + (0.0779 − 0.239i)6-s + (0.683 − 0.496i)7-s + (0.286 + 0.207i)8-s + (−0.269 − 0.829i)9-s + (−0.372 − 0.927i)11-s − 0.178·12-s + (0.363 + 1.11i)13-s + (−0.483 − 0.351i)14-s + (0.0772 − 0.237i)16-s + (0.196 − 0.603i)17-s + (−0.499 + 0.362i)18-s + (−0.0708 − 0.0515i)19-s + ⋯ |
Λ(s)=(=(550s/2ΓC(s)L(s)(0.0219+0.999i)Λ(2−s)
Λ(s)=(=(550s/2ΓC(s+1/2)L(s)(0.0219+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
550
= 2⋅52⋅11
|
Sign: |
0.0219+0.999i
|
Analytic conductor: |
4.39177 |
Root analytic conductor: |
2.09565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ550(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 550, ( :1/2), 0.0219+0.999i)
|
Particular Values
L(1) |
≈ |
0.985172−0.963747i |
L(21) |
≈ |
0.985172−0.963747i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.309+0.951i)T |
| 5 | 1 |
| 11 | 1+(1.23+3.07i)T |
good | 3 | 1+(−0.5−0.363i)T+(0.927+2.85i)T2 |
| 7 | 1+(−1.80+1.31i)T+(2.16−6.65i)T2 |
| 13 | 1+(−1.30−4.02i)T+(−10.5+7.64i)T2 |
| 17 | 1+(−0.809+2.48i)T+(−13.7−9.99i)T2 |
| 19 | 1+(0.309+0.224i)T+(5.87+18.0i)T2 |
| 23 | 1−2.85T+23T2 |
| 29 | 1+(−7.66+5.56i)T+(8.96−27.5i)T2 |
| 31 | 1+(1.78+5.48i)T+(−25.0+18.2i)T2 |
| 37 | 1+(−1.73+1.26i)T+(11.4−35.1i)T2 |
| 41 | 1+(7.85+5.70i)T+(12.6+38.9i)T2 |
| 43 | 1+0.527T+43T2 |
| 47 | 1+(−3.42−2.48i)T+(14.5+44.6i)T2 |
| 53 | 1+(−1.11−3.44i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−2.04+1.48i)T+(18.2−56.1i)T2 |
| 61 | 1+(0.690−2.12i)T+(−49.3−35.8i)T2 |
| 67 | 1−6.32T+67T2 |
| 71 | 1+(4.57−14.0i)T+(−57.4−41.7i)T2 |
| 73 | 1+(12.0−8.73i)T+(22.5−69.4i)T2 |
| 79 | 1+(−1.83−5.65i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−2.78+8.55i)T+(−67.1−48.7i)T2 |
| 89 | 1−9.18T+89T2 |
| 97 | 1+(−3.70−11.4i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63676265253664432663881169786, −9.694459773198906708735256592731, −8.867212636620179763009773907126, −8.225266920821470604339491579037, −7.08599327818047503478115493529, −5.92266679071401456802796133195, −4.59240063397054813432271120616, −3.71650288545644717929278058225, −2.56456482855910133228178817823, −0.909834619166162361229114892992,
1.66898707992793268170819857843, 3.07826092333088880951295018187, 4.84592775826124543848570205482, 5.31602000236144683602024260028, 6.58848741665435749858409045822, 7.63046634759462610059548962024, 8.259295774337207122779362967891, 8.871959323442526062742066184177, 10.25790449642380175191092203002, 10.67131162618513741580798975928