Properties

Label 550.2.h.g
Level $550$
Weight $2$
Character orbit 550.h
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{2} + (\zeta_{10}^{3} + \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + (\zeta_{10}^{2} + 1) q^{6} + ( - \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{7} - \zeta_{10}^{2} q^{8} + \cdots + ( - 3 \zeta_{10}^{3} + 4 \zeta_{10} - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 2 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} + q^{8} - q^{9} + 4 q^{11} + 2 q^{12} + 3 q^{13} - 5 q^{14} - q^{16} + q^{17} - 4 q^{18} + q^{19} + 10 q^{21} + q^{22} - 2 q^{23} + 3 q^{24} + 7 q^{26}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
201.1
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i 0.500000 + 1.53884i 0.309017 0.951057i 0 1.30902 + 0.951057i 0.690983 2.12663i −0.309017 0.951057i 0.309017 0.224514i 0
251.1 −0.309017 + 0.951057i 0.500000 0.363271i −0.809017 0.587785i 0 0.190983 + 0.587785i 1.80902 + 1.31433i 0.809017 0.587785i −0.809017 + 2.48990i 0
301.1 0.809017 + 0.587785i 0.500000 1.53884i 0.309017 + 0.951057i 0 1.30902 0.951057i 0.690983 + 2.12663i −0.309017 + 0.951057i 0.309017 + 0.224514i 0
401.1 −0.309017 0.951057i 0.500000 + 0.363271i −0.809017 + 0.587785i 0 0.190983 0.587785i 1.80902 1.31433i 0.809017 + 0.587785i −0.809017 2.48990i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.2.h.g yes 4
5.b even 2 1 550.2.h.c 4
5.c odd 4 2 550.2.ba.e 8
11.c even 5 1 inner 550.2.h.g yes 4
11.c even 5 1 6050.2.a.ca 2
11.d odd 10 1 6050.2.a.cr 2
55.h odd 10 1 6050.2.a.bx 2
55.j even 10 1 550.2.h.c 4
55.j even 10 1 6050.2.a.co 2
55.k odd 20 2 550.2.ba.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
550.2.h.c 4 5.b even 2 1
550.2.h.c 4 55.j even 10 1
550.2.h.g yes 4 1.a even 1 1 trivial
550.2.h.g yes 4 11.c even 5 1 inner
550.2.ba.e 8 5.c odd 4 2
550.2.ba.e 8 55.k odd 20 2
6050.2.a.bx 2 55.h odd 10 1
6050.2.a.ca 2 11.c even 5 1
6050.2.a.co 2 55.j even 10 1
6050.2.a.cr 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(550, [\chi])\):

\( T_{3}^{4} - 2T_{3}^{3} + 4T_{3}^{2} - 3T_{3} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} - 5T_{7}^{3} + 15T_{7}^{2} - 25T_{7} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 11)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 15 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$31$ \( T^{4} - 13 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$43$ \( (T^{2} + 10 T + 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$61$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$67$ \( (T^{2} + 3 T - 59)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 25 T^{3} + \cdots + 21025 \) Copy content Toggle raw display
$73$ \( T^{4} + 19 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$79$ \( T^{4} - 23 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$83$ \( T^{4} + 9 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 121)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 12 T^{3} + \cdots + 20736 \) Copy content Toggle raw display
show more
show less