Properties

Label 550.2.h.g
Level 550550
Weight 22
Character orbit 550.h
Analytic conductor 4.3924.392
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 550=25211 550 = 2 \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 550.h (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.391772111174.39177211117
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ103+ζ102++1)q2+(ζ103+ζ10)q3ζ103q4+(ζ102+1)q6+(ζ1032ζ10+2)q7ζ102q8++(3ζ103+4ζ103)q99+O(q100) q + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{2} + (\zeta_{10}^{3} + \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + (\zeta_{10}^{2} + 1) q^{6} + ( - \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{7} - \zeta_{10}^{2} q^{8} + \cdots + ( - 3 \zeta_{10}^{3} + 4 \zeta_{10} - 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2+2q3q4+3q6+5q7+q8q9+4q11+2q12+3q135q14q16+q174q18+q19+10q21+q222q23+3q24+7q26+11q99+O(q100) 4 q + q^{2} + 2 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} + q^{8} - q^{9} + 4 q^{11} + 2 q^{12} + 3 q^{13} - 5 q^{14} - q^{16} + q^{17} - 4 q^{18} + q^{19} + 10 q^{21} + q^{22} - 2 q^{23} + 3 q^{24} + 7 q^{26}+ \cdots - 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/550Z)×\left(\mathbb{Z}/550\mathbb{Z}\right)^\times.

nn 101101 177177
χ(n)\chi(n) ζ103-\zeta_{10}^{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
201.1
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i 0.500000 + 1.53884i 0.309017 0.951057i 0 1.30902 + 0.951057i 0.690983 2.12663i −0.309017 0.951057i 0.309017 0.224514i 0
251.1 −0.309017 + 0.951057i 0.500000 0.363271i −0.809017 0.587785i 0 0.190983 + 0.587785i 1.80902 + 1.31433i 0.809017 0.587785i −0.809017 + 2.48990i 0
301.1 0.809017 + 0.587785i 0.500000 1.53884i 0.309017 + 0.951057i 0 1.30902 0.951057i 0.690983 + 2.12663i −0.309017 + 0.951057i 0.309017 + 0.224514i 0
401.1 −0.309017 0.951057i 0.500000 + 0.363271i −0.809017 + 0.587785i 0 0.190983 0.587785i 1.80902 1.31433i 0.809017 + 0.587785i −0.809017 2.48990i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.2.h.g yes 4
5.b even 2 1 550.2.h.c 4
5.c odd 4 2 550.2.ba.e 8
11.c even 5 1 inner 550.2.h.g yes 4
11.c even 5 1 6050.2.a.ca 2
11.d odd 10 1 6050.2.a.cr 2
55.h odd 10 1 6050.2.a.bx 2
55.j even 10 1 550.2.h.c 4
55.j even 10 1 6050.2.a.co 2
55.k odd 20 2 550.2.ba.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
550.2.h.c 4 5.b even 2 1
550.2.h.c 4 55.j even 10 1
550.2.h.g yes 4 1.a even 1 1 trivial
550.2.h.g yes 4 11.c even 5 1 inner
550.2.ba.e 8 5.c odd 4 2
550.2.ba.e 8 55.k odd 20 2
6050.2.a.bx 2 55.h odd 10 1
6050.2.a.ca 2 11.c even 5 1
6050.2.a.co 2 55.j even 10 1
6050.2.a.cr 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(550,[χ])S_{2}^{\mathrm{new}}(550, [\chi]):

T342T33+4T323T3+1 T_{3}^{4} - 2T_{3}^{3} + 4T_{3}^{2} - 3T_{3} + 1 Copy content Toggle raw display
T745T73+15T7225T7+25 T_{7}^{4} - 5T_{7}^{3} + 15T_{7}^{2} - 25T_{7} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
33 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T45T3++25 T^{4} - 5 T^{3} + \cdots + 25 Copy content Toggle raw display
1111 T44T3++121 T^{4} - 4 T^{3} + \cdots + 121 Copy content Toggle raw display
1313 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
1717 T4T3+6T2++1 T^{4} - T^{3} + 6 T^{2} + \cdots + 1 Copy content Toggle raw display
1919 T4T3+6T2++1 T^{4} - T^{3} + 6 T^{2} + \cdots + 1 Copy content Toggle raw display
2323 (T2+T11)2 (T^{2} + T - 11)^{2} Copy content Toggle raw display
2929 T415T3++25 T^{4} - 15 T^{3} + \cdots + 25 Copy content Toggle raw display
3131 T413T3++3481 T^{4} - 13 T^{3} + \cdots + 3481 Copy content Toggle raw display
3737 T4+2T3++361 T^{4} + 2 T^{3} + \cdots + 361 Copy content Toggle raw display
4141 T4+18T3++1296 T^{4} + 18 T^{3} + \cdots + 1296 Copy content Toggle raw display
4343 (T2+10T+5)2 (T^{2} + 10 T + 5)^{2} Copy content Toggle raw display
4747 T47T3++1 T^{4} - 7 T^{3} + \cdots + 1 Copy content Toggle raw display
5353 T4+10T2++25 T^{4} + 10 T^{2} + \cdots + 25 Copy content Toggle raw display
5959 T4+3T3++841 T^{4} + 3 T^{3} + \cdots + 841 Copy content Toggle raw display
6161 T4+5T3++25 T^{4} + 5 T^{3} + \cdots + 25 Copy content Toggle raw display
6767 (T2+3T59)2 (T^{2} + 3 T - 59)^{2} Copy content Toggle raw display
7171 T4+25T3++21025 T^{4} + 25 T^{3} + \cdots + 21025 Copy content Toggle raw display
7373 T4+19T3++14641 T^{4} + 19 T^{3} + \cdots + 14641 Copy content Toggle raw display
7979 T423T3++5041 T^{4} - 23 T^{3} + \cdots + 5041 Copy content Toggle raw display
8383 T4+9T3++6561 T^{4} + 9 T^{3} + \cdots + 6561 Copy content Toggle raw display
8989 (T2+4T121)2 (T^{2} + 4 T - 121)^{2} Copy content Toggle raw display
9797 T4+12T3++20736 T^{4} + 12 T^{3} + \cdots + 20736 Copy content Toggle raw display
show more
show less