L(s) = 1 | + (−3.72 + 6.44i)3-s + (2.5 + 4.33i)5-s + (15.4 − 10.2i)7-s + (−14.2 − 24.6i)9-s + (32.6 − 56.5i)11-s − 56.7·13-s − 37.2·15-s + (−54.4 + 94.2i)17-s + (48.5 + 84.0i)19-s + (8.64 + 137. i)21-s + (63.6 + 110. i)23-s + (−12.5 + 21.6i)25-s + 10.8·27-s − 72.5·29-s + (−61.2 + 106. i)31-s + ⋯ |
L(s) = 1 | + (−0.716 + 1.24i)3-s + (0.223 + 0.387i)5-s + (0.832 − 0.553i)7-s + (−0.526 − 0.912i)9-s + (0.895 − 1.55i)11-s − 1.21·13-s − 0.640·15-s + (−0.776 + 1.34i)17-s + (0.586 + 1.01i)19-s + (0.0898 + 1.43i)21-s + (0.576 + 0.999i)23-s + (−0.100 + 0.173i)25-s + 0.0773·27-s − 0.464·29-s + (−0.354 + 0.614i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.000641i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.000641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.8840532834\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8840532834\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (-15.4 + 10.2i)T \) |
good | 3 | \( 1 + (3.72 - 6.44i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (-32.6 + 56.5i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 56.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (54.4 - 94.2i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-48.5 - 84.0i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-63.6 - 110. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 72.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (61.2 - 106. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (51.7 + 89.5i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 46.1T + 6.89e4T^{2} \) |
| 43 | \( 1 + 334.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (155. + 269. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (302. - 523. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (426. - 738. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-76.8 - 133. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-115. + 200. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 1.07e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (476. - 825. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-37.0 - 64.2i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 781.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (5.04 + 8.74i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 59.8T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85316719536127620605277254272, −10.11029401008239851571498916727, −9.246158958290914406816837020072, −8.267869571583599265546447509199, −7.12271310616057633793597141741, −5.94588651415710123305543771496, −5.26636133375153924341691448902, −4.15960740636298571299343601304, −3.41872092318639359870350075329, −1.49230310295847017972237633878,
0.29022050967809919668198130686, 1.64565050842415559173178619048, 2.42515938148959830604470613617, 4.80807466383985943872657512182, 4.99856174720665312164307189554, 6.54330019524602338111852315488, 7.06408284657718702456742394924, 7.85424649906756774255634216326, 9.161823104102867239360401564782, 9.689818444173567549159330927722