Properties

Label 560.4.q.p
Level 560560
Weight 44
Character orbit 560.q
Analytic conductor 33.04133.041
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 560.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 33.041069603233.0410696032
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x122x11+95x10258x9+7289x815564x7+170984x6+88720x5++6718464 x^{12} - 2 x^{11} + 95 x^{10} - 258 x^{9} + 7289 x^{8} - 15564 x^{7} + 170984 x^{6} + 88720 x^{5} + \cdots + 6718464 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 210 2^{10}
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β11)q3+5β3q5+(β9+3β3+β1)q7+(β9+β8+β7++1)q9+(β8+β5+β4+2)q11++(3β1112β10+21)q99+O(q100) q + (\beta_{3} - \beta_1 - 1) q^{3} + 5 \beta_{3} q^{5} + (\beta_{9} + 3 \beta_{3} + \beta_1) q^{7} + (\beta_{9} + \beta_{8} + \beta_{7} + \cdots + 1) q^{9} + ( - \beta_{8} + \beta_{5} + \beta_{4} + \cdots - 2) q^{11}+ \cdots + ( - 3 \beta_{11} - 12 \beta_{10} + \cdots - 21) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q8q3+30q5+14q734q9240q1380q15+122q172q19+170q21+30q23150q25+64q27+476q29122q31+584q33100q35+342q37++216q99+O(q100) 12 q - 8 q^{3} + 30 q^{5} + 14 q^{7} - 34 q^{9} - 240 q^{13} - 80 q^{15} + 122 q^{17} - 2 q^{19} + 170 q^{21} + 30 q^{23} - 150 q^{25} + 64 q^{27} + 476 q^{29} - 122 q^{31} + 584 q^{33} - 100 q^{35} + 342 q^{37}+ \cdots + 216 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x122x11+95x10258x9+7289x815564x7+170984x6+88720x5++6718464 x^{12} - 2 x^{11} + 95 x^{10} - 258 x^{9} + 7289 x^{8} - 15564 x^{7} + 170984 x^{6} + 88720 x^{5} + \cdots + 6718464 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (267705222294445ν11++82 ⁣ ⁣16)/23 ⁣ ⁣76 ( - 267705222294445 \nu^{11} + \cdots + 82\!\cdots\!16 ) / 23\!\cdots\!76 Copy content Toggle raw display
β3\beta_{3}== (10 ⁣ ⁣79ν11++20 ⁣ ⁣28)/92 ⁣ ⁣04 ( 10\!\cdots\!79 \nu^{11} + \cdots + 20\!\cdots\!28 ) / 92\!\cdots\!04 Copy content Toggle raw display
β4\beta_{4}== (15217828912144ν118836236713621ν10++68 ⁣ ⁣32)/85 ⁣ ⁣88 ( 15217828912144 \nu^{11} - 8836236713621 \nu^{10} + \cdots + 68\!\cdots\!32 ) / 85\!\cdots\!88 Copy content Toggle raw display
β5\beta_{5}== (12 ⁣ ⁣94ν11++43 ⁣ ⁣52)/23 ⁣ ⁣76 ( 12\!\cdots\!94 \nu^{11} + \cdots + 43\!\cdots\!52 ) / 23\!\cdots\!76 Copy content Toggle raw display
β6\beta_{6}== (59 ⁣ ⁣01ν11++44 ⁣ ⁣24)/92 ⁣ ⁣04 ( - 59\!\cdots\!01 \nu^{11} + \cdots + 44\!\cdots\!24 ) / 92\!\cdots\!04 Copy content Toggle raw display
β7\beta_{7}== (62 ⁣ ⁣81ν11+56 ⁣ ⁣76)/92 ⁣ ⁣04 ( - 62\!\cdots\!81 \nu^{11} + \cdots - 56\!\cdots\!76 ) / 92\!\cdots\!04 Copy content Toggle raw display
β8\beta_{8}== (11 ⁣ ⁣63ν11+11 ⁣ ⁣36)/11 ⁣ ⁣88 ( 11\!\cdots\!63 \nu^{11} + \cdots - 11\!\cdots\!36 ) / 11\!\cdots\!88 Copy content Toggle raw display
β9\beta_{9}== (57 ⁣ ⁣95ν11++20 ⁣ ⁣32)/23 ⁣ ⁣76 ( 57\!\cdots\!95 \nu^{11} + \cdots + 20\!\cdots\!32 ) / 23\!\cdots\!76 Copy content Toggle raw display
β10\beta_{10}== (335263802565144ν11235819143081583ν10+35 ⁣ ⁣28)/12 ⁣ ⁣32 ( 335263802565144 \nu^{11} - 235819143081583 \nu^{10} + \cdots - 35\!\cdots\!28 ) / 12\!\cdots\!32 Copy content Toggle raw display
β11\beta_{11}== (10 ⁣ ⁣93ν11++19 ⁣ ⁣44)/92 ⁣ ⁣04 ( 10\!\cdots\!93 \nu^{11} + \cdots + 19\!\cdots\!44 ) / 92\!\cdots\!04 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β9+β8+β7β6+β5β432β32β1+1 \beta_{9} + \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} - 32\beta_{3} - 2\beta _1 + 1 Copy content Toggle raw display
ν3\nu^{3}== β11+3β103β93β84β6+60β4+3β3β2+32 -\beta_{11} + 3\beta_{10} - 3\beta_{9} - 3\beta_{8} - 4\beta_{6} + 60\beta_{4} + 3\beta_{3} - \beta_{2} + 32 Copy content Toggle raw display
ν4\nu^{4}== 71β10+15β962β871β7+76β614β5+1847 - 71 \beta_{10} + 15 \beta_{9} - 62 \beta_{8} - 71 \beta_{7} + 76 \beta_{6} - 14 \beta_{5} + \cdots - 1847 Copy content Toggle raw display
ν5\nu^{5}== 69β11+84β9+327β8+351β784β6+396β53664β4++327 69 \beta_{11} + 84 \beta_{9} + 327 \beta_{8} + 351 \beta_{7} - 84 \beta_{6} + 396 \beta_{5} - 3664 \beta_{4} + \cdots + 327 Copy content Toggle raw display
ν6\nu^{6}== 9β11+4987β105581β91539β81530β64042β5++115942 9 \beta_{11} + 4987 \beta_{10} - 5581 \beta_{9} - 1539 \beta_{8} - 1530 \beta_{6} - 4042 \beta_{5} + \cdots + 115942 Copy content Toggle raw display
ν7\nu^{7}== 32019β10+18039β911928β832019β7+34612β6+573971 - 32019 \beta_{10} + 18039 \beta_{9} - 11928 \beta_{8} - 32019 \beta_{7} + 34612 \beta_{6} + \cdots - 573971 Copy content Toggle raw display
ν8\nu^{8}== 5231β11+276254β9+408389β8+364103β7276254β6++408389 5231 \beta_{11} + 276254 \beta_{9} + 408389 \beta_{8} + 364103 \beta_{7} - 276254 \beta_{6} + \cdots + 408389 Copy content Toggle raw display
ν9\nu^{9}== 315309β11+2697495β102579607β91356579β81671888β6++49203216 - 315309 \beta_{11} + 2697495 \beta_{10} - 2579607 \beta_{9} - 1356579 \beta_{8} - 1671888 \beta_{6} + \cdots + 49203216 Copy content Toggle raw display
ν10\nu^{10}== 27378739β10+10805643β919582930β827378739β7+31178404β6+621474251 - 27378739 \beta_{10} + 10805643 \beta_{9} - 19582930 \beta_{8} - 27378739 \beta_{7} + 31178404 \beta_{6} + \cdots - 621474251 Copy content Toggle raw display
ν11\nu^{11}== 21802933β11+110900976β9+214648479β8+219532347β7110900976β6++214648479 21802933 \beta_{11} + 110900976 \beta_{9} + 214648479 \beta_{8} + 219532347 \beta_{7} - 110900976 \beta_{6} + \cdots + 214648479 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/560Z)×\left(\mathbb{Z}/560\mathbb{Z}\right)^\times.

nn 241241 337337 351351 421421
χ(n)\chi(n) β3-\beta_{3} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
3.54223 6.13533i
3.22348 5.58323i
0.889448 1.54057i
−0.531189 + 0.920046i
−1.69507 + 2.93594i
−4.42891 + 7.67109i
3.54223 + 6.13533i
3.22348 + 5.58323i
0.889448 + 1.54057i
−0.531189 0.920046i
−1.69507 2.93594i
−4.42891 7.67109i
0 −4.04223 + 7.00136i 0 2.50000 + 4.33013i 0 −18.4932 + 0.999858i 0 −19.1793 33.2196i 0
81.2 0 −3.72348 + 6.44926i 0 2.50000 + 4.33013i 0 15.4269 10.2474i 0 −14.2286 24.6447i 0
81.3 0 −1.38945 + 2.40659i 0 2.50000 + 4.33013i 0 −2.01227 + 18.4106i 0 9.63887 + 16.6950i 0
81.4 0 0.0311889 0.0540207i 0 2.50000 + 4.33013i 0 16.7481 + 7.90586i 0 13.4981 + 23.3793i 0
81.5 0 1.19507 2.06992i 0 2.50000 + 4.33013i 0 3.21331 18.2394i 0 10.6436 + 18.4353i 0
81.6 0 3.92891 6.80507i 0 2.50000 + 4.33013i 0 −7.88276 + 16.7589i 0 −17.3726 30.0903i 0
401.1 0 −4.04223 7.00136i 0 2.50000 4.33013i 0 −18.4932 0.999858i 0 −19.1793 + 33.2196i 0
401.2 0 −3.72348 6.44926i 0 2.50000 4.33013i 0 15.4269 + 10.2474i 0 −14.2286 + 24.6447i 0
401.3 0 −1.38945 2.40659i 0 2.50000 4.33013i 0 −2.01227 18.4106i 0 9.63887 16.6950i 0
401.4 0 0.0311889 + 0.0540207i 0 2.50000 4.33013i 0 16.7481 7.90586i 0 13.4981 23.3793i 0
401.5 0 1.19507 + 2.06992i 0 2.50000 4.33013i 0 3.21331 + 18.2394i 0 10.6436 18.4353i 0
401.6 0 3.92891 + 6.80507i 0 2.50000 4.33013i 0 −7.88276 16.7589i 0 −17.3726 + 30.0903i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.4.q.p 12
4.b odd 2 1 280.4.q.e 12
7.c even 3 1 inner 560.4.q.p 12
28.f even 6 1 1960.4.a.bb 6
28.g odd 6 1 280.4.q.e 12
28.g odd 6 1 1960.4.a.w 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.q.e 12 4.b odd 2 1
280.4.q.e 12 28.g odd 6 1
560.4.q.p 12 1.a even 1 1 trivial
560.4.q.p 12 7.c even 3 1 inner
1960.4.a.w 6 28.g odd 6 1
1960.4.a.bb 6 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(560,[χ])S_{4}^{\mathrm{new}}(560, [\chi]):

T312+8T311+130T310+560T39+8447T38+34856T37++38416 T_{3}^{12} + 8 T_{3}^{11} + 130 T_{3}^{10} + 560 T_{3}^{9} + 8447 T_{3}^{8} + 34856 T_{3}^{7} + \cdots + 38416 Copy content Toggle raw display
T1112+6101T1110+211064T119+27970393T118+961017372T117++68 ⁣ ⁣64 T_{11}^{12} + 6101 T_{11}^{10} + 211064 T_{11}^{9} + 27970393 T_{11}^{8} + 961017372 T_{11}^{7} + \cdots + 68\!\cdots\!64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+8T11++38416 T^{12} + 8 T^{11} + \cdots + 38416 Copy content Toggle raw display
55 (T25T+25)6 (T^{2} - 5 T + 25)^{6} Copy content Toggle raw display
77 T12++16 ⁣ ⁣49 T^{12} + \cdots + 16\!\cdots\!49 Copy content Toggle raw display
1111 T12++68 ⁣ ⁣64 T^{12} + \cdots + 68\!\cdots\!64 Copy content Toggle raw display
1313 (T6+120T5++8623951872)2 (T^{6} + 120 T^{5} + \cdots + 8623951872)^{2} Copy content Toggle raw display
1717 T12++14 ⁣ ⁣76 T^{12} + \cdots + 14\!\cdots\!76 Copy content Toggle raw display
1919 T12++10 ⁣ ⁣36 T^{12} + \cdots + 10\!\cdots\!36 Copy content Toggle raw display
2323 T12++13 ⁣ ⁣09 T^{12} + \cdots + 13\!\cdots\!09 Copy content Toggle raw display
2929 (T6238T5++931883943676)2 (T^{6} - 238 T^{5} + \cdots + 931883943676)^{2} Copy content Toggle raw display
3131 T12++26 ⁣ ⁣16 T^{12} + \cdots + 26\!\cdots\!16 Copy content Toggle raw display
3737 T12++46 ⁣ ⁣56 T^{12} + \cdots + 46\!\cdots\!56 Copy content Toggle raw display
4141 (T6+2860161422643)2 (T^{6} + \cdots - 2860161422643)^{2} Copy content Toggle raw display
4343 (T6+44576110032948)2 (T^{6} + \cdots - 44576110032948)^{2} Copy content Toggle raw display
4747 T12++63 ⁣ ⁣24 T^{12} + \cdots + 63\!\cdots\!24 Copy content Toggle raw display
5353 T12++54 ⁣ ⁣04 T^{12} + \cdots + 54\!\cdots\!04 Copy content Toggle raw display
5959 T12++99 ⁣ ⁣56 T^{12} + \cdots + 99\!\cdots\!56 Copy content Toggle raw display
6161 T12++69 ⁣ ⁣84 T^{12} + \cdots + 69\!\cdots\!84 Copy content Toggle raw display
6767 T12++17 ⁣ ⁣36 T^{12} + \cdots + 17\!\cdots\!36 Copy content Toggle raw display
7171 (T6+15 ⁣ ⁣00)2 (T^{6} + \cdots - 15\!\cdots\!00)^{2} Copy content Toggle raw display
7373 T12++15 ⁣ ⁣96 T^{12} + \cdots + 15\!\cdots\!96 Copy content Toggle raw display
7979 T12++61 ⁣ ⁣44 T^{12} + \cdots + 61\!\cdots\!44 Copy content Toggle raw display
8383 (T6+28 ⁣ ⁣52)2 (T^{6} + \cdots - 28\!\cdots\!52)^{2} Copy content Toggle raw display
8989 T12++25 ⁣ ⁣24 T^{12} + \cdots + 25\!\cdots\!24 Copy content Toggle raw display
9797 (T6++32 ⁣ ⁣68)2 (T^{6} + \cdots + 32\!\cdots\!68)^{2} Copy content Toggle raw display
show more
show less