[N,k,chi] = [560,4,Mod(81,560)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(560, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("560.81");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 560 Z ) × \left(\mathbb{Z}/560\mathbb{Z}\right)^\times ( Z / 5 6 0 Z ) × .
n n n
241 241 2 4 1
337 337 3 3 7
351 351 3 5 1
421 421 4 2 1
χ ( n ) \chi(n) χ ( n )
− β 3 -\beta_{3} − β 3
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 560 , [ χ ] ) S_{4}^{\mathrm{new}}(560, [\chi]) S 4 n e w ( 5 6 0 , [ χ ] ) :
T 3 12 + 8 T 3 11 + 130 T 3 10 + 560 T 3 9 + 8447 T 3 8 + 34856 T 3 7 + ⋯ + 38416 T_{3}^{12} + 8 T_{3}^{11} + 130 T_{3}^{10} + 560 T_{3}^{9} + 8447 T_{3}^{8} + 34856 T_{3}^{7} + \cdots + 38416 T 3 1 2 + 8 T 3 1 1 + 1 3 0 T 3 1 0 + 5 6 0 T 3 9 + 8 4 4 7 T 3 8 + 3 4 8 5 6 T 3 7 + ⋯ + 3 8 4 1 6
T3^12 + 8*T3^11 + 130*T3^10 + 560*T3^9 + 8447*T3^8 + 34856*T3^7 + 287746*T3^6 + 269344*T3^5 + 1756817*T3^4 + 603160*T3^3 + 9835540*T3^2 - 613088*T3 + 38416
T 11 12 + 6101 T 11 10 + 211064 T 11 9 + 27970393 T 11 8 + 961017372 T 11 7 + ⋯ + 68 ⋯ 64 T_{11}^{12} + 6101 T_{11}^{10} + 211064 T_{11}^{9} + 27970393 T_{11}^{8} + 961017372 T_{11}^{7} + \cdots + 68\!\cdots\!64 T 1 1 1 2 + 6 1 0 1 T 1 1 1 0 + 2 1 1 0 6 4 T 1 1 9 + 2 7 9 7 0 3 9 3 T 1 1 8 + 9 6 1 0 1 7 3 7 2 T 1 1 7 + ⋯ + 6 8 ⋯ 6 4
T11^12 + 6101*T11^10 + 211064*T11^9 + 27970393*T11^8 + 961017372*T11^7 + 72818613648*T11^6 + 2893705539424*T11^5 + 135040605835152*T11^4 + 3486965236533632*T11^3 + 76371917562555136*T11^2 + 830394598552933120*T11 + 6854788009115640064
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 + 8 T 11 + ⋯ + 38416 T^{12} + 8 T^{11} + \cdots + 38416 T 1 2 + 8 T 1 1 + ⋯ + 3 8 4 1 6
T^12 + 8*T^11 + 130*T^10 + 560*T^9 + 8447*T^8 + 34856*T^7 + 287746*T^6 + 269344*T^5 + 1756817*T^4 + 603160*T^3 + 9835540*T^2 - 613088*T + 38416
5 5 5
( T 2 − 5 T + 25 ) 6 (T^{2} - 5 T + 25)^{6} ( T 2 − 5 T + 2 5 ) 6
(T^2 - 5*T + 25)^6
7 7 7
T 12 + ⋯ + 16 ⋯ 49 T^{12} + \cdots + 16\!\cdots\!49 T 1 2 + ⋯ + 1 6 ⋯ 4 9
T^12 - 14*T^11 + 282*T^10 - 2444*T^9 - 64138*T^8 + 3833410*T^7 - 45232194*T^6 + 1314859630*T^5 - 7545771562*T^4 - 98624215508*T^3 + 3903242990682*T^2 - 66465861139202*T + 1628413597910449
11 11 1 1
T 12 + ⋯ + 68 ⋯ 64 T^{12} + \cdots + 68\!\cdots\!64 T 1 2 + ⋯ + 6 8 ⋯ 6 4
T^12 + 6101*T^10 + 211064*T^9 + 27970393*T^8 + 961017372*T^7 + 72818613648*T^6 + 2893705539424*T^5 + 135040605835152*T^4 + 3486965236533632*T^3 + 76371917562555136*T^2 + 830394598552933120*T + 6854788009115640064
13 13 1 3
( T 6 + 120 T 5 + ⋯ + 8623951872 ) 2 (T^{6} + 120 T^{5} + \cdots + 8623951872)^{2} ( T 6 + 1 2 0 T 5 + ⋯ + 8 6 2 3 9 5 1 8 7 2 ) 2
(T^6 + 120*T^5 - 1811*T^4 - 603390*T^3 - 14105480*T^2 + 307760544*T + 8623951872)^2
17 17 1 7
T 12 + ⋯ + 14 ⋯ 76 T^{12} + \cdots + 14\!\cdots\!76 T 1 2 + ⋯ + 1 4 ⋯ 7 6
T^12 - 122*T^11 + 33736*T^10 - 2921000*T^9 + 623314592*T^8 - 50724314016*T^7 + 6837125271616*T^6 - 436451657017344*T^5 + 45861161590548480*T^4 - 2681310837476597760*T^3 + 172596855450956267520*T^2 - 5254909103885866500096*T + 143986418025895068696576
19 19 1 9
T 12 + ⋯ + 10 ⋯ 36 T^{12} + \cdots + 10\!\cdots\!36 T 1 2 + ⋯ + 1 0 ⋯ 3 6
T^12 + 2*T^11 + 28893*T^10 + 1867562*T^9 + 663502361*T^8 + 35991725414*T^7 + 6108292656744*T^6 + 346334615392664*T^5 + 41381787339220064*T^4 + 1729090622173862240*T^3 + 61295678588906139456*T^2 + 894352318691109615104*T + 10159270185460863963136
23 23 2 3
T 12 + ⋯ + 13 ⋯ 09 T^{12} + \cdots + 13\!\cdots\!09 T 1 2 + ⋯ + 1 3 ⋯ 0 9
T^12 - 30*T^11 + 42341*T^10 - 4097098*T^9 + 1516472434*T^8 - 113797376614*T^7 + 18403286664949*T^6 - 910993104937422*T^5 + 137112109236395202*T^4 - 6232256721436344354*T^3 + 367907765637920346549*T^2 - 2291485938121873559430*T + 13124056139065863340209
29 29 2 9
( T 6 − 238 T 5 + ⋯ + 931883943676 ) 2 (T^{6} - 238 T^{5} + \cdots + 931883943676)^{2} ( T 6 − 2 3 8 T 5 + ⋯ + 9 3 1 8 8 3 9 4 3 6 7 6 ) 2
(T^6 - 238*T^5 - 45708*T^4 + 8770450*T^3 + 66318319*T^2 - 37433510532*T + 931883943676)^2
31 31 3 1
T 12 + ⋯ + 26 ⋯ 16 T^{12} + \cdots + 26\!\cdots\!16 T 1 2 + ⋯ + 2 6 ⋯ 1 6
T^12 + 122*T^11 + 87876*T^10 + 23424896*T^9 + 8385954368*T^8 + 1419054572032*T^7 + 184862858816512*T^6 + 13762730920452096*T^5 + 749742374057525248*T^4 + 22783841884839346176*T^3 + 490423729807911813120*T^2 + 4220300566724383604736*T + 26671736148957924950016
37 37 3 7
T 12 + ⋯ + 46 ⋯ 56 T^{12} + \cdots + 46\!\cdots\!56 T 1 2 + ⋯ + 4 6 ⋯ 5 6
T^12 - 342*T^11 + 178811*T^10 - 27306494*T^9 + 11627655913*T^8 - 1460042469316*T^7 + 503356435314688*T^6 - 22125042673756352*T^5 + 6898648747531357184*T^4 + 188066242634284778496*T^3 + 88802502981848513769472*T^2 + 1988554077854446479507456*T + 46242666296457368869011456
41 41 4 1
( T 6 + ⋯ − 2860161422643 ) 2 (T^{6} + \cdots - 2860161422643)^{2} ( T 6 + ⋯ − 2 8 6 0 1 6 1 4 2 2 6 4 3 ) 2
(T^6 + 338*T^5 - 171509*T^4 - 44862628*T^3 - 358899801*T^2 + 189089846994*T - 2860161422643)^2
43 43 4 3
( T 6 + ⋯ − 44576110032948 ) 2 (T^{6} + \cdots - 44576110032948)^{2} ( T 6 + ⋯ − 4 4 5 7 6 1 1 0 0 3 2 9 4 8 ) 2
(T^6 + 588*T^5 - 108702*T^4 - 126822756*T^3 - 26332766719*T^2 - 1992482500632*T - 44576110032948)^2
47 47 4 7
T 12 + ⋯ + 63 ⋯ 24 T^{12} + \cdots + 63\!\cdots\!24 T 1 2 + ⋯ + 6 3 ⋯ 2 4
T^12 - 260*T^11 + 449845*T^10 - 77687436*T^9 + 143890721161*T^8 - 26812569965264*T^7 + 16407008667784528*T^6 - 2490626185412191488*T^5 + 1273256892606894354688*T^4 - 198579699584040631758848*T^3 + 30770832318587873184514048*T^2 - 1540136853030465353482764288*T + 63852135622021316267237965824
53 53 5 3
T 12 + ⋯ + 54 ⋯ 04 T^{12} + \cdots + 54\!\cdots\!04 T 1 2 + ⋯ + 5 4 ⋯ 0 4
T^12 + 680*T^11 + 716247*T^10 + 395176516*T^9 + 331291657245*T^8 + 165055706341754*T^7 + 66417740438044288*T^6 + 17045681597974823640*T^5 + 3291702623044709198976*T^4 + 412820522366386222810080*T^3 + 37345496803601511573358272*T^2 + 1718341177500216903455587584*T + 54157135098710408057005999104
59 59 5 9
T 12 + ⋯ + 99 ⋯ 56 T^{12} + \cdots + 99\!\cdots\!56 T 1 2 + ⋯ + 9 9 ⋯ 5 6
T^12 + 918*T^11 + 1109352*T^10 + 388034200*T^9 + 398010047136*T^8 + 150566738229984*T^7 + 91066823052129088*T^6 + 11139914871435449856*T^5 + 1094076534932439232512*T^4 + 26493068341466591330304*T^3 + 516935809946360189288448*T^2 + 741722685332864020512768*T + 994316877528181040480256
61 61 6 1
T 12 + ⋯ + 69 ⋯ 84 T^{12} + \cdots + 69\!\cdots\!84 T 1 2 + ⋯ + 6 9 ⋯ 8 4
T^12 - 1026*T^11 + 1303064*T^10 - 701142956*T^9 + 672172785841*T^8 - 359270091197844*T^7 + 204463162897116432*T^6 - 55969316797636985986*T^5 + 12784807105420486811865*T^4 - 1128111699872879938871432*T^3 + 105967230579281220480188464*T^2 + 2338310313712695353109550976*T + 690367800517813034179371030784
67 67 6 7
T 12 + ⋯ + 17 ⋯ 36 T^{12} + \cdots + 17\!\cdots\!36 T 1 2 + ⋯ + 1 7 ⋯ 3 6
T^12 - 1532*T^11 + 1668618*T^10 - 1075895648*T^9 + 570130668731*T^8 - 219512850686672*T^7 + 82295216446275162*T^6 - 25204990248473204516*T^5 + 7246246578282817930577*T^4 - 1503854426951384732221040*T^3 + 251910098322606900879230160*T^2 - 24834254990221560877524487424*T + 1716994499715498278472056494336
71 71 7 1
( T 6 + ⋯ − 15 ⋯ 00 ) 2 (T^{6} + \cdots - 15\!\cdots\!00)^{2} ( T 6 + ⋯ − 1 5 ⋯ 0 0 ) 2
(T^6 - 150*T^5 - 1259076*T^4 - 37172968*T^3 + 349067423040*T^2 + 15829612444800*T - 15125099576832000)^2
73 73 7 3
T 12 + ⋯ + 15 ⋯ 96 T^{12} + \cdots + 15\!\cdots\!96 T 1 2 + ⋯ + 1 5 ⋯ 9 6
T^12 + 158*T^11 + 1155780*T^10 - 135201216*T^9 + 971043716032*T^8 - 93452067098112*T^7 + 330226614007415808*T^6 - 53330314603341479936*T^5 + 82130345634503207501824*T^4 - 6680207289078960144384000*T^3 + 4308254736916039526973702144*T^2 + 248316198858435087347623133184*T + 158715771710110394812149106999296
79 79 7 9
T 12 + ⋯ + 61 ⋯ 44 T^{12} + \cdots + 61\!\cdots\!44 T 1 2 + ⋯ + 6 1 ⋯ 4 4
T^12 - 222*T^11 + 2082708*T^10 + 588698304*T^9 + 3097839427920*T^8 + 854150398261344*T^7 + 2090483202662724544*T^6 + 996545842588776768000*T^5 + 1011245916647753272274688*T^4 + 263182194312524338831292928*T^3 + 93512124502299909952652934144*T^2 - 6493984960708140801473565978624*T + 619417525283588692781151735660544
83 83 8 3
( T 6 + ⋯ − 28 ⋯ 52 ) 2 (T^{6} + \cdots - 28\!\cdots\!52)^{2} ( T 6 + ⋯ − 2 8 ⋯ 5 2 ) 2
(T^6 + 352*T^5 - 2106230*T^4 - 1215836976*T^3 + 724957075653*T^2 + 427960246558608*T - 28187979507134352)^2
89 89 8 9
T 12 + ⋯ + 25 ⋯ 24 T^{12} + \cdots + 25\!\cdots\!24 T 1 2 + ⋯ + 2 5 ⋯ 2 4
T^12 - 1684*T^11 + 4785938*T^10 - 3623360824*T^9 + 8827895272671*T^8 - 5632290247329148*T^7 + 10809493777178820386*T^6 - 3330264351515510628144*T^5 + 5985887584379797944076865*T^4 - 1125208737878179339244731508*T^3 + 2449373479160440643676307269100*T^2 + 24718056566518612402513978345776*T + 250726214795092782887013018151824
97 97 9 7
( T 6 + ⋯ + 32 ⋯ 68 ) 2 (T^{6} + \cdots + 32\!\cdots\!68)^{2} ( T 6 + ⋯ + 3 2 ⋯ 6 8 ) 2
(T^6 + 1300*T^5 - 1822516*T^4 - 2732523040*T^3 - 131112522384*T^2 + 544285243941696*T + 32470471403189568)^2
show more
show less