L(s) = 1 | + (−4.04 + 7.00i)3-s + (2.5 + 4.33i)5-s + (−18.4 + 0.999i)7-s + (−19.1 − 33.2i)9-s + (−19.1 + 33.1i)11-s − 24.4·13-s − 40.4·15-s + (24.5 − 42.5i)17-s + (−8.94 − 15.4i)19-s + (67.7 − 133. i)21-s + (−46.5 − 80.6i)23-s + (−12.5 + 21.6i)25-s + 91.8·27-s + 122.·29-s + (−102. + 177. i)31-s + ⋯ |
L(s) = 1 | + (−0.777 + 1.34i)3-s + (0.223 + 0.387i)5-s + (−0.998 + 0.0539i)7-s + (−0.710 − 1.23i)9-s + (−0.524 + 0.908i)11-s − 0.522·13-s − 0.695·15-s + (0.350 − 0.606i)17-s + (−0.108 − 0.187i)19-s + (0.704 − 1.38i)21-s + (−0.422 − 0.731i)23-s + (−0.100 + 0.173i)25-s + 0.654·27-s + 0.782·29-s + (−0.595 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3551203191\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3551203191\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (18.4 - 0.999i)T \) |
good | 3 | \( 1 + (4.04 - 7.00i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (19.1 - 33.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 24.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-24.5 + 42.5i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (8.94 + 15.4i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (46.5 + 80.6i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 122.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (102. - 177. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (117. + 203. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 507.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 477.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-28.4 - 49.2i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (29.2 - 50.6i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (0.720 - 1.24i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-415. - 720. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-79.1 + 137. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 202.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-384. + 665. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (306. + 531. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 623.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-800. - 1.38e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.37e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29172689802416607644932449858, −9.708147637267524286410744314362, −8.922023146272850987569283183262, −7.37509858626280854887854251969, −6.52190995967602018874550880312, −5.47031612785266238024059461542, −4.73818005951827413118940495408, −3.64666125812616219473668938836, −2.51694605294967344989218752148, −0.15219911733168798951985663715,
0.867934400516754521745062260243, 2.18642675796018478361271096669, 3.55344847614233379712887484201, 5.25407418341512805847343427920, 5.97824871077144459756650637811, 6.66967727643279575359591462092, 7.65041916378495340659980973373, 8.439447149522761544124904238854, 9.650688018129915053388350645367, 10.48888834127674158698922937883