Properties

Label 560.4.q.p.81.1
Level $560$
Weight $4$
Character 560.81
Analytic conductor $33.041$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 95 x^{10} - 258 x^{9} + 7289 x^{8} - 15564 x^{7} + 170984 x^{6} + 88720 x^{5} + \cdots + 6718464 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(3.54223 - 6.13533i\) of defining polynomial
Character \(\chi\) \(=\) 560.81
Dual form 560.4.q.p.401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.04223 + 7.00136i) q^{3} +(2.50000 + 4.33013i) q^{5} +(-18.4932 + 0.999858i) q^{7} +(-19.1793 - 33.2196i) q^{9} +(-19.1387 + 33.1492i) q^{11} -24.4727 q^{13} -40.4223 q^{15} +(24.5607 - 42.5405i) q^{17} +(-8.94558 - 15.4942i) q^{19} +(67.7537 - 133.519i) q^{21} +(-46.5837 - 80.6853i) q^{23} +(-12.5000 + 21.6506i) q^{25} +91.8286 q^{27} +122.266 q^{29} +(-102.755 + 177.977i) q^{31} +(-154.726 - 267.993i) q^{33} +(-50.5626 - 77.5785i) q^{35} +(-117.658 - 203.789i) q^{37} +(98.9244 - 171.342i) q^{39} -507.445 q^{41} +477.564 q^{43} +(95.8966 - 166.098i) q^{45} +(28.4095 + 49.2067i) q^{47} +(341.001 - 36.9812i) q^{49} +(198.561 + 343.917i) q^{51} +(-29.2152 + 50.6022i) q^{53} -191.387 q^{55} +144.640 q^{57} +(-0.720543 + 1.24802i) q^{59} +(415.848 + 720.270i) q^{61} +(387.903 + 595.161i) q^{63} +(-61.1817 - 105.970i) q^{65} +(79.1069 - 137.017i) q^{67} +753.209 q^{69} +202.622 q^{71} +(384.117 - 665.310i) q^{73} +(-101.056 - 175.034i) q^{75} +(320.792 - 632.172i) q^{77} +(-306.740 - 531.289i) q^{79} +(146.649 - 254.003i) q^{81} +623.021 q^{83} +245.607 q^{85} +(-494.227 + 856.025i) q^{87} +(800.544 + 1386.58i) q^{89} +(452.580 - 24.4692i) q^{91} +(-830.718 - 1438.85i) q^{93} +(44.7279 - 77.4710i) q^{95} +1371.59 q^{97} +1468.27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{3} + 30 q^{5} + 14 q^{7} - 34 q^{9} - 240 q^{13} - 80 q^{15} + 122 q^{17} - 2 q^{19} + 170 q^{21} + 30 q^{23} - 150 q^{25} + 64 q^{27} + 476 q^{29} - 122 q^{31} + 584 q^{33} - 100 q^{35} + 342 q^{37}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.04223 + 7.00136i −0.777928 + 1.34741i 0.155205 + 0.987882i \(0.450396\pi\)
−0.933134 + 0.359529i \(0.882937\pi\)
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −18.4932 + 0.999858i −0.998542 + 0.0539872i
\(8\) 0 0
\(9\) −19.1793 33.2196i −0.710345 1.23035i
\(10\) 0 0
\(11\) −19.1387 + 33.1492i −0.524594 + 0.908623i 0.474996 + 0.879988i \(0.342449\pi\)
−0.999590 + 0.0286351i \(0.990884\pi\)
\(12\) 0 0
\(13\) −24.4727 −0.522116 −0.261058 0.965323i \(-0.584071\pi\)
−0.261058 + 0.965323i \(0.584071\pi\)
\(14\) 0 0
\(15\) −40.4223 −0.695800
\(16\) 0 0
\(17\) 24.5607 42.5405i 0.350403 0.606916i −0.635917 0.771758i \(-0.719378\pi\)
0.986320 + 0.164841i \(0.0527112\pi\)
\(18\) 0 0
\(19\) −8.94558 15.4942i −0.108013 0.187085i 0.806952 0.590617i \(-0.201116\pi\)
−0.914965 + 0.403532i \(0.867782\pi\)
\(20\) 0 0
\(21\) 67.7537 133.519i 0.704051 1.38744i
\(22\) 0 0
\(23\) −46.5837 80.6853i −0.422321 0.731481i 0.573845 0.818964i \(-0.305451\pi\)
−0.996166 + 0.0874829i \(0.972118\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 91.8286 0.654534
\(28\) 0 0
\(29\) 122.266 0.782902 0.391451 0.920199i \(-0.371973\pi\)
0.391451 + 0.920199i \(0.371973\pi\)
\(30\) 0 0
\(31\) −102.755 + 177.977i −0.595333 + 1.03115i 0.398167 + 0.917313i \(0.369646\pi\)
−0.993500 + 0.113833i \(0.963687\pi\)
\(32\) 0 0
\(33\) −154.726 267.993i −0.816193 1.41369i
\(34\) 0 0
\(35\) −50.5626 77.5785i −0.244190 0.374662i
\(36\) 0 0
\(37\) −117.658 203.789i −0.522778 0.905478i −0.999649 0.0265044i \(-0.991562\pi\)
0.476871 0.878973i \(-0.341771\pi\)
\(38\) 0 0
\(39\) 98.9244 171.342i 0.406169 0.703505i
\(40\) 0 0
\(41\) −507.445 −1.93292 −0.966459 0.256821i \(-0.917325\pi\)
−0.966459 + 0.256821i \(0.917325\pi\)
\(42\) 0 0
\(43\) 477.564 1.69367 0.846835 0.531856i \(-0.178505\pi\)
0.846835 + 0.531856i \(0.178505\pi\)
\(44\) 0 0
\(45\) 95.8966 166.098i 0.317676 0.550231i
\(46\) 0 0
\(47\) 28.4095 + 49.2067i 0.0881691 + 0.152713i 0.906737 0.421696i \(-0.138565\pi\)
−0.818568 + 0.574409i \(0.805232\pi\)
\(48\) 0 0
\(49\) 341.001 36.9812i 0.994171 0.107817i
\(50\) 0 0
\(51\) 198.561 + 343.917i 0.545177 + 0.944275i
\(52\) 0 0
\(53\) −29.2152 + 50.6022i −0.0757173 + 0.131146i −0.901398 0.432992i \(-0.857458\pi\)
0.825681 + 0.564138i \(0.190791\pi\)
\(54\) 0 0
\(55\) −191.387 −0.469211
\(56\) 0 0
\(57\) 144.640 0.336107
\(58\) 0 0
\(59\) −0.720543 + 1.24802i −0.00158994 + 0.00275386i −0.866819 0.498622i \(-0.833839\pi\)
0.865229 + 0.501376i \(0.167173\pi\)
\(60\) 0 0
\(61\) 415.848 + 720.270i 0.872851 + 1.51182i 0.859035 + 0.511918i \(0.171065\pi\)
0.0138164 + 0.999905i \(0.495602\pi\)
\(62\) 0 0
\(63\) 387.903 + 595.161i 0.775733 + 1.19021i
\(64\) 0 0
\(65\) −61.1817 105.970i −0.116749 0.202214i
\(66\) 0 0
\(67\) 79.1069 137.017i 0.144246 0.249841i −0.784846 0.619691i \(-0.787258\pi\)
0.929091 + 0.369851i \(0.120591\pi\)
\(68\) 0 0
\(69\) 753.209 1.31414
\(70\) 0 0
\(71\) 202.622 0.338687 0.169344 0.985557i \(-0.445835\pi\)
0.169344 + 0.985557i \(0.445835\pi\)
\(72\) 0 0
\(73\) 384.117 665.310i 0.615856 1.06669i −0.374378 0.927276i \(-0.622144\pi\)
0.990234 0.139418i \(-0.0445231\pi\)
\(74\) 0 0
\(75\) −101.056 175.034i −0.155586 0.269482i
\(76\) 0 0
\(77\) 320.792 632.172i 0.474775 0.935619i
\(78\) 0 0
\(79\) −306.740 531.289i −0.436847 0.756642i 0.560597 0.828089i \(-0.310572\pi\)
−0.997444 + 0.0714470i \(0.977238\pi\)
\(80\) 0 0
\(81\) 146.649 254.003i 0.201164 0.348427i
\(82\) 0 0
\(83\) 623.021 0.823921 0.411961 0.911202i \(-0.364844\pi\)
0.411961 + 0.911202i \(0.364844\pi\)
\(84\) 0 0
\(85\) 245.607 0.313410
\(86\) 0 0
\(87\) −494.227 + 856.025i −0.609042 + 1.05489i
\(88\) 0 0
\(89\) 800.544 + 1386.58i 0.953455 + 1.65143i 0.737864 + 0.674949i \(0.235834\pi\)
0.215591 + 0.976484i \(0.430832\pi\)
\(90\) 0 0
\(91\) 452.580 24.4692i 0.521354 0.0281876i
\(92\) 0 0
\(93\) −830.718 1438.85i −0.926252 1.60432i
\(94\) 0 0
\(95\) 44.7279 77.4710i 0.0483051 0.0836669i
\(96\) 0 0
\(97\) 1371.59 1.43571 0.717855 0.696192i \(-0.245124\pi\)
0.717855 + 0.696192i \(0.245124\pi\)
\(98\) 0 0
\(99\) 1468.27 1.49057
\(100\) 0 0
\(101\) −280.619 + 486.046i −0.276461 + 0.478845i −0.970503 0.241090i \(-0.922495\pi\)
0.694041 + 0.719935i \(0.255828\pi\)
\(102\) 0 0
\(103\) −964.125 1669.91i −0.922311 1.59749i −0.795830 0.605520i \(-0.792965\pi\)
−0.126481 0.991969i \(-0.540368\pi\)
\(104\) 0 0
\(105\) 747.541 40.4166i 0.694786 0.0375643i
\(106\) 0 0
\(107\) −407.537 705.875i −0.368207 0.637753i 0.621079 0.783748i \(-0.286695\pi\)
−0.989285 + 0.145996i \(0.953361\pi\)
\(108\) 0 0
\(109\) 61.2225 106.040i 0.0537986 0.0931819i −0.837872 0.545867i \(-0.816200\pi\)
0.891671 + 0.452685i \(0.149534\pi\)
\(110\) 0 0
\(111\) 1902.40 1.62673
\(112\) 0 0
\(113\) −6.21067 −0.00517036 −0.00258518 0.999997i \(-0.500823\pi\)
−0.00258518 + 0.999997i \(0.500823\pi\)
\(114\) 0 0
\(115\) 232.919 403.427i 0.188868 0.327128i
\(116\) 0 0
\(117\) 469.370 + 812.972i 0.370882 + 0.642387i
\(118\) 0 0
\(119\) −411.674 + 811.269i −0.317127 + 0.624949i
\(120\) 0 0
\(121\) −67.0785 116.183i −0.0503971 0.0872903i
\(122\) 0 0
\(123\) 2051.21 3552.81i 1.50367 2.60444i
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −436.086 −0.304696 −0.152348 0.988327i \(-0.548683\pi\)
−0.152348 + 0.988327i \(0.548683\pi\)
\(128\) 0 0
\(129\) −1930.43 + 3343.60i −1.31755 + 2.28207i
\(130\) 0 0
\(131\) −848.858 1470.26i −0.566145 0.980593i −0.996942 0.0781437i \(-0.975101\pi\)
0.430797 0.902449i \(-0.358233\pi\)
\(132\) 0 0
\(133\) 180.925 + 277.594i 0.117956 + 0.180981i
\(134\) 0 0
\(135\) 229.572 + 397.630i 0.146358 + 0.253500i
\(136\) 0 0
\(137\) −417.686 + 723.454i −0.260477 + 0.451159i −0.966369 0.257160i \(-0.917213\pi\)
0.705892 + 0.708320i \(0.250546\pi\)
\(138\) 0 0
\(139\) 1937.72 1.18241 0.591207 0.806520i \(-0.298652\pi\)
0.591207 + 0.806520i \(0.298652\pi\)
\(140\) 0 0
\(141\) −459.351 −0.274357
\(142\) 0 0
\(143\) 468.375 811.249i 0.273899 0.474406i
\(144\) 0 0
\(145\) 305.664 + 529.426i 0.175062 + 0.303217i
\(146\) 0 0
\(147\) −1119.49 + 2536.95i −0.628120 + 1.42343i
\(148\) 0 0
\(149\) −1229.72 2129.95i −0.676127 1.17109i −0.976138 0.217151i \(-0.930324\pi\)
0.300011 0.953936i \(-0.403010\pi\)
\(150\) 0 0
\(151\) −1361.19 + 2357.66i −0.733592 + 1.27062i 0.221746 + 0.975104i \(0.428824\pi\)
−0.955338 + 0.295514i \(0.904509\pi\)
\(152\) 0 0
\(153\) −1884.23 −0.995629
\(154\) 0 0
\(155\) −1027.55 −0.532482
\(156\) 0 0
\(157\) −206.900 + 358.361i −0.105175 + 0.182168i −0.913810 0.406143i \(-0.866873\pi\)
0.808635 + 0.588311i \(0.200207\pi\)
\(158\) 0 0
\(159\) −236.189 409.092i −0.117805 0.204045i
\(160\) 0 0
\(161\) 942.158 + 1445.56i 0.461195 + 0.707614i
\(162\) 0 0
\(163\) −1287.48 2229.98i −0.618669 1.07157i −0.989729 0.142957i \(-0.954339\pi\)
0.371060 0.928609i \(-0.378994\pi\)
\(164\) 0 0
\(165\) 773.631 1339.97i 0.365012 0.632220i
\(166\) 0 0
\(167\) −1814.53 −0.840794 −0.420397 0.907340i \(-0.638109\pi\)
−0.420397 + 0.907340i \(0.638109\pi\)
\(168\) 0 0
\(169\) −1598.09 −0.727395
\(170\) 0 0
\(171\) −343.140 + 594.336i −0.153454 + 0.265790i
\(172\) 0 0
\(173\) −939.835 1627.84i −0.413031 0.715390i 0.582189 0.813054i \(-0.302196\pi\)
−0.995220 + 0.0976633i \(0.968863\pi\)
\(174\) 0 0
\(175\) 209.518 412.889i 0.0905033 0.178351i
\(176\) 0 0
\(177\) −5.82521 10.0896i −0.00247373 0.00428462i
\(178\) 0 0
\(179\) 1798.83 3115.67i 0.751122 1.30098i −0.196157 0.980573i \(-0.562846\pi\)
0.947279 0.320409i \(-0.103820\pi\)
\(180\) 0 0
\(181\) 923.641 0.379302 0.189651 0.981852i \(-0.439264\pi\)
0.189651 + 0.981852i \(0.439264\pi\)
\(182\) 0 0
\(183\) −6723.82 −2.71606
\(184\) 0 0
\(185\) 588.288 1018.94i 0.233793 0.404942i
\(186\) 0 0
\(187\) 940.121 + 1628.34i 0.367639 + 0.636769i
\(188\) 0 0
\(189\) −1698.21 + 91.8156i −0.653580 + 0.0353365i
\(190\) 0 0
\(191\) −535.093 926.808i −0.202712 0.351107i 0.746689 0.665173i \(-0.231642\pi\)
−0.949401 + 0.314066i \(0.898309\pi\)
\(192\) 0 0
\(193\) 81.3975 140.985i 0.0303582 0.0525819i −0.850447 0.526060i \(-0.823669\pi\)
0.880805 + 0.473479i \(0.157002\pi\)
\(194\) 0 0
\(195\) 989.244 0.363288
\(196\) 0 0
\(197\) 558.652 0.202042 0.101021 0.994884i \(-0.467789\pi\)
0.101021 + 0.994884i \(0.467789\pi\)
\(198\) 0 0
\(199\) 230.435 399.125i 0.0820859 0.142177i −0.822060 0.569401i \(-0.807175\pi\)
0.904146 + 0.427224i \(0.140508\pi\)
\(200\) 0 0
\(201\) 639.538 + 1107.71i 0.224425 + 0.388716i
\(202\) 0 0
\(203\) −2261.09 + 122.248i −0.781760 + 0.0422667i
\(204\) 0 0
\(205\) −1268.61 2197.30i −0.432214 0.748616i
\(206\) 0 0
\(207\) −1786.89 + 3094.98i −0.599987 + 1.03921i
\(208\) 0 0
\(209\) 684.826 0.226653
\(210\) 0 0
\(211\) −6051.16 −1.97431 −0.987154 0.159770i \(-0.948925\pi\)
−0.987154 + 0.159770i \(0.948925\pi\)
\(212\) 0 0
\(213\) −819.045 + 1418.63i −0.263475 + 0.456351i
\(214\) 0 0
\(215\) 1193.91 + 2067.91i 0.378716 + 0.655956i
\(216\) 0 0
\(217\) 1722.32 3394.11i 0.538796 1.06178i
\(218\) 0 0
\(219\) 3105.38 + 5378.68i 0.958184 + 1.65962i
\(220\) 0 0
\(221\) −601.068 + 1041.08i −0.182951 + 0.316880i
\(222\) 0 0
\(223\) 322.103 0.0967246 0.0483623 0.998830i \(-0.484600\pi\)
0.0483623 + 0.998830i \(0.484600\pi\)
\(224\) 0 0
\(225\) 958.966 0.284138
\(226\) 0 0
\(227\) 319.611 553.582i 0.0934507 0.161861i −0.815510 0.578743i \(-0.803544\pi\)
0.908961 + 0.416881i \(0.136877\pi\)
\(228\) 0 0
\(229\) −3094.58 5359.98i −0.892995 1.54671i −0.836266 0.548324i \(-0.815266\pi\)
−0.0567290 0.998390i \(-0.518067\pi\)
\(230\) 0 0
\(231\) 3129.34 + 4801.37i 0.891323 + 1.36756i
\(232\) 0 0
\(233\) −1825.98 3162.68i −0.513406 0.889246i −0.999879 0.0155502i \(-0.995050\pi\)
0.486473 0.873696i \(-0.338283\pi\)
\(234\) 0 0
\(235\) −142.047 + 246.033i −0.0394304 + 0.0682955i
\(236\) 0 0
\(237\) 4959.66 1.35934
\(238\) 0 0
\(239\) 4653.34 1.25941 0.629706 0.776833i \(-0.283175\pi\)
0.629706 + 0.776833i \(0.283175\pi\)
\(240\) 0 0
\(241\) −2502.09 + 4333.75i −0.668772 + 1.15835i 0.309476 + 0.950907i \(0.399846\pi\)
−0.978248 + 0.207439i \(0.933487\pi\)
\(242\) 0 0
\(243\) 2425.26 + 4200.68i 0.640250 + 1.10895i
\(244\) 0 0
\(245\) 1012.63 + 1384.12i 0.264061 + 0.360932i
\(246\) 0 0
\(247\) 218.922 + 379.185i 0.0563955 + 0.0976799i
\(248\) 0 0
\(249\) −2518.40 + 4361.99i −0.640952 + 1.11016i
\(250\) 0 0
\(251\) 3335.76 0.838849 0.419425 0.907790i \(-0.362232\pi\)
0.419425 + 0.907790i \(0.362232\pi\)
\(252\) 0 0
\(253\) 3566.20 0.886187
\(254\) 0 0
\(255\) −992.803 + 1719.59i −0.243811 + 0.422293i
\(256\) 0 0
\(257\) 1992.62 + 3451.32i 0.483643 + 0.837694i 0.999824 0.0187856i \(-0.00597999\pi\)
−0.516181 + 0.856480i \(0.672647\pi\)
\(258\) 0 0
\(259\) 2379.63 + 3651.08i 0.570900 + 0.875934i
\(260\) 0 0
\(261\) −2344.97 4061.61i −0.556131 0.963247i
\(262\) 0 0
\(263\) 948.952 1643.63i 0.222490 0.385364i −0.733073 0.680150i \(-0.761915\pi\)
0.955564 + 0.294785i \(0.0952481\pi\)
\(264\) 0 0
\(265\) −292.152 −0.0677236
\(266\) 0 0
\(267\) −12943.9 −2.96688
\(268\) 0 0
\(269\) −2929.03 + 5073.23i −0.663890 + 1.14989i 0.315695 + 0.948861i \(0.397762\pi\)
−0.979585 + 0.201030i \(0.935571\pi\)
\(270\) 0 0
\(271\) −4127.73 7149.44i −0.925246 1.60257i −0.791164 0.611604i \(-0.790525\pi\)
−0.134082 0.990970i \(-0.542809\pi\)
\(272\) 0 0
\(273\) −1658.12 + 3267.58i −0.367596 + 0.724407i
\(274\) 0 0
\(275\) −478.467 828.729i −0.104919 0.181725i
\(276\) 0 0
\(277\) 3761.81 6515.64i 0.815975 1.41331i −0.0926506 0.995699i \(-0.529534\pi\)
0.908626 0.417612i \(-0.137133\pi\)
\(278\) 0 0
\(279\) 7883.07 1.69157
\(280\) 0 0
\(281\) −3588.95 −0.761917 −0.380958 0.924592i \(-0.624406\pi\)
−0.380958 + 0.924592i \(0.624406\pi\)
\(282\) 0 0
\(283\) −98.6675 + 170.897i −0.0207250 + 0.0358967i −0.876202 0.481944i \(-0.839931\pi\)
0.855477 + 0.517841i \(0.173264\pi\)
\(284\) 0 0
\(285\) 361.601 + 626.312i 0.0751558 + 0.130174i
\(286\) 0 0
\(287\) 9384.31 507.373i 1.93010 0.104353i
\(288\) 0 0
\(289\) 1250.04 + 2165.13i 0.254435 + 0.440694i
\(290\) 0 0
\(291\) −5544.29 + 9602.99i −1.11688 + 1.93449i
\(292\) 0 0
\(293\) −3779.52 −0.753590 −0.376795 0.926297i \(-0.622974\pi\)
−0.376795 + 0.926297i \(0.622974\pi\)
\(294\) 0 0
\(295\) −7.20543 −0.00142209
\(296\) 0 0
\(297\) −1757.48 + 3044.04i −0.343365 + 0.594725i
\(298\) 0 0
\(299\) 1140.03 + 1974.59i 0.220500 + 0.381918i
\(300\) 0 0
\(301\) −8831.71 + 477.496i −1.69120 + 0.0914366i
\(302\) 0 0
\(303\) −2268.65 3929.42i −0.430134 0.745014i
\(304\) 0 0
\(305\) −2079.24 + 3601.35i −0.390351 + 0.676107i
\(306\) 0 0
\(307\) −4494.68 −0.835585 −0.417793 0.908542i \(-0.637196\pi\)
−0.417793 + 0.908542i \(0.637196\pi\)
\(308\) 0 0
\(309\) 15588.9 2.86997
\(310\) 0 0
\(311\) 4871.50 8437.69i 0.888224 1.53845i 0.0462507 0.998930i \(-0.485273\pi\)
0.841973 0.539519i \(-0.181394\pi\)
\(312\) 0 0
\(313\) −2283.13 3954.50i −0.412301 0.714126i 0.582840 0.812587i \(-0.301941\pi\)
−0.995141 + 0.0984609i \(0.968608\pi\)
\(314\) 0 0
\(315\) −1607.37 + 3167.57i −0.287507 + 0.566579i
\(316\) 0 0
\(317\) −4634.53 8027.25i −0.821140 1.42226i −0.904834 0.425765i \(-0.860005\pi\)
0.0836938 0.996492i \(-0.473328\pi\)
\(318\) 0 0
\(319\) −2340.00 + 4053.01i −0.410706 + 0.711363i
\(320\) 0 0
\(321\) 6589.45 1.14575
\(322\) 0 0
\(323\) −878.840 −0.151393
\(324\) 0 0
\(325\) 305.909 529.849i 0.0522116 0.0904331i
\(326\) 0 0
\(327\) 494.951 + 857.280i 0.0837029 + 0.144978i
\(328\) 0 0
\(329\) −574.583 881.586i −0.0962851 0.147731i
\(330\) 0 0
\(331\) −490.867 850.206i −0.0815120 0.141183i 0.822388 0.568928i \(-0.192642\pi\)
−0.903900 + 0.427745i \(0.859308\pi\)
\(332\) 0 0
\(333\) −4513.18 + 7817.06i −0.742706 + 1.28640i
\(334\) 0 0
\(335\) 791.069 0.129017
\(336\) 0 0
\(337\) 84.2571 0.0136195 0.00680975 0.999977i \(-0.497832\pi\)
0.00680975 + 0.999977i \(0.497832\pi\)
\(338\) 0 0
\(339\) 25.1050 43.4831i 0.00402217 0.00696660i
\(340\) 0 0
\(341\) −3933.18 6812.47i −0.624615 1.08187i
\(342\) 0 0
\(343\) −6269.23 + 1024.86i −0.986900 + 0.161332i
\(344\) 0 0
\(345\) 1883.02 + 3261.49i 0.293851 + 0.508965i
\(346\) 0 0
\(347\) −4111.38 + 7121.11i −0.636053 + 1.10168i 0.350238 + 0.936661i \(0.386101\pi\)
−0.986291 + 0.165015i \(0.947233\pi\)
\(348\) 0 0
\(349\) 315.862 0.0484461 0.0242231 0.999707i \(-0.492289\pi\)
0.0242231 + 0.999707i \(0.492289\pi\)
\(350\) 0 0
\(351\) −2247.29 −0.341743
\(352\) 0 0
\(353\) −5591.22 + 9684.28i −0.843033 + 1.46018i 0.0442851 + 0.999019i \(0.485899\pi\)
−0.887318 + 0.461157i \(0.847434\pi\)
\(354\) 0 0
\(355\) 506.555 + 877.379i 0.0757328 + 0.131173i
\(356\) 0 0
\(357\) −4015.90 6161.61i −0.595361 0.913465i
\(358\) 0 0
\(359\) −5526.16 9571.59i −0.812422 1.40716i −0.911164 0.412044i \(-0.864815\pi\)
0.0987415 0.995113i \(-0.468518\pi\)
\(360\) 0 0
\(361\) 3269.45 5662.86i 0.476666 0.825610i
\(362\) 0 0
\(363\) 1084.59 0.156821
\(364\) 0 0
\(365\) 3841.17 0.550838
\(366\) 0 0
\(367\) 1062.42 1840.16i 0.151111 0.261732i −0.780525 0.625124i \(-0.785048\pi\)
0.931636 + 0.363392i \(0.118382\pi\)
\(368\) 0 0
\(369\) 9732.46 + 16857.1i 1.37304 + 2.37817i
\(370\) 0 0
\(371\) 489.689 965.010i 0.0685266 0.135043i
\(372\) 0 0
\(373\) −4354.21 7541.71i −0.604430 1.04690i −0.992141 0.125122i \(-0.960068\pi\)
0.387712 0.921781i \(-0.373266\pi\)
\(374\) 0 0
\(375\) 505.279 875.169i 0.0695800 0.120516i
\(376\) 0 0
\(377\) −2992.17 −0.408765
\(378\) 0 0
\(379\) 724.535 0.0981976 0.0490988 0.998794i \(-0.484365\pi\)
0.0490988 + 0.998794i \(0.484365\pi\)
\(380\) 0 0
\(381\) 1762.76 3053.19i 0.237032 0.410551i
\(382\) 0 0
\(383\) 4702.82 + 8145.52i 0.627422 + 1.08673i 0.988067 + 0.154024i \(0.0492233\pi\)
−0.360645 + 0.932703i \(0.617443\pi\)
\(384\) 0 0
\(385\) 3539.36 191.360i 0.468527 0.0253314i
\(386\) 0 0
\(387\) −9159.35 15864.5i −1.20309 2.08381i
\(388\) 0 0
\(389\) 1220.99 2114.81i 0.159143 0.275643i −0.775417 0.631449i \(-0.782460\pi\)
0.934560 + 0.355806i \(0.115794\pi\)
\(390\) 0 0
\(391\) −4576.52 −0.591930
\(392\) 0 0
\(393\) 13725.1 1.76168
\(394\) 0 0
\(395\) 1533.70 2656.45i 0.195364 0.338380i
\(396\) 0 0
\(397\) 2593.54 + 4492.14i 0.327874 + 0.567894i 0.982090 0.188414i \(-0.0603346\pi\)
−0.654216 + 0.756308i \(0.727001\pi\)
\(398\) 0 0
\(399\) −2674.87 + 144.620i −0.335617 + 0.0181455i
\(400\) 0 0
\(401\) −220.116 381.252i −0.0274116 0.0474783i 0.851994 0.523551i \(-0.175393\pi\)
−0.879406 + 0.476073i \(0.842060\pi\)
\(402\) 0 0
\(403\) 2514.69 4355.57i 0.310832 0.538378i
\(404\) 0 0
\(405\) 1466.49 0.179927
\(406\) 0 0
\(407\) 9007.24 1.09698
\(408\) 0 0
\(409\) 2097.39 3632.79i 0.253568 0.439193i −0.710938 0.703255i \(-0.751729\pi\)
0.964506 + 0.264062i \(0.0850625\pi\)
\(410\) 0 0
\(411\) −3376.77 5848.74i −0.405265 0.701939i
\(412\) 0 0
\(413\) 12.0773 23.8003i 0.00143895 0.00283568i
\(414\) 0 0
\(415\) 1557.55 + 2697.76i 0.184234 + 0.319103i
\(416\) 0 0
\(417\) −7832.73 + 13566.7i −0.919833 + 1.59320i
\(418\) 0 0
\(419\) 9420.34 1.09836 0.549181 0.835703i \(-0.314940\pi\)
0.549181 + 0.835703i \(0.314940\pi\)
\(420\) 0 0
\(421\) −4037.44 −0.467394 −0.233697 0.972309i \(-0.575082\pi\)
−0.233697 + 0.972309i \(0.575082\pi\)
\(422\) 0 0
\(423\) 1089.75 1887.50i 0.125261 0.216958i
\(424\) 0 0
\(425\) 614.019 + 1063.51i 0.0700807 + 0.121383i
\(426\) 0 0
\(427\) −8410.55 12904.3i −0.953197 1.46249i
\(428\) 0 0
\(429\) 3786.56 + 6558.52i 0.426147 + 0.738108i
\(430\) 0 0
\(431\) 7442.50 12890.8i 0.831769 1.44067i −0.0648645 0.997894i \(-0.520662\pi\)
0.896634 0.442773i \(-0.146005\pi\)
\(432\) 0 0
\(433\) −15136.6 −1.67995 −0.839977 0.542621i \(-0.817432\pi\)
−0.839977 + 0.542621i \(0.817432\pi\)
\(434\) 0 0
\(435\) −4942.27 −0.544744
\(436\) 0 0
\(437\) −833.436 + 1443.55i −0.0912326 + 0.158020i
\(438\) 0 0
\(439\) −6789.29 11759.4i −0.738121 1.27846i −0.953341 0.301897i \(-0.902380\pi\)
0.215220 0.976566i \(-0.430953\pi\)
\(440\) 0 0
\(441\) −7768.66 10618.6i −0.838858 1.14659i
\(442\) 0 0
\(443\) 6181.24 + 10706.2i 0.662933 + 1.14823i 0.979841 + 0.199778i \(0.0640220\pi\)
−0.316908 + 0.948456i \(0.602645\pi\)
\(444\) 0 0
\(445\) −4002.72 + 6932.92i −0.426398 + 0.738543i
\(446\) 0 0
\(447\) 19883.3 2.10391
\(448\) 0 0
\(449\) 2631.38 0.276575 0.138288 0.990392i \(-0.455840\pi\)
0.138288 + 0.990392i \(0.455840\pi\)
\(450\) 0 0
\(451\) 9711.84 16821.4i 1.01400 1.75629i
\(452\) 0 0
\(453\) −11004.5 19060.4i −1.14136 1.97690i
\(454\) 0 0
\(455\) 1237.40 + 1898.55i 0.127495 + 0.195617i
\(456\) 0 0
\(457\) −8780.85 15208.9i −0.898799 1.55677i −0.829031 0.559202i \(-0.811108\pi\)
−0.0697674 0.997563i \(-0.522226\pi\)
\(458\) 0 0
\(459\) 2255.38 3906.43i 0.229351 0.397248i
\(460\) 0 0
\(461\) 13957.4 1.41011 0.705056 0.709152i \(-0.250922\pi\)
0.705056 + 0.709152i \(0.250922\pi\)
\(462\) 0 0
\(463\) −8495.00 −0.852691 −0.426346 0.904560i \(-0.640199\pi\)
−0.426346 + 0.904560i \(0.640199\pi\)
\(464\) 0 0
\(465\) 4153.59 7194.23i 0.414233 0.717472i
\(466\) 0 0
\(467\) −1386.60 2401.66i −0.137396 0.237978i 0.789114 0.614247i \(-0.210540\pi\)
−0.926510 + 0.376269i \(0.877207\pi\)
\(468\) 0 0
\(469\) −1325.95 + 2612.99i −0.130547 + 0.257264i
\(470\) 0 0
\(471\) −1672.68 2897.16i −0.163637 0.283427i
\(472\) 0 0
\(473\) −9139.95 + 15830.9i −0.888489 + 1.53891i
\(474\) 0 0
\(475\) 447.279 0.0432054
\(476\) 0 0
\(477\) 2241.31 0.215142
\(478\) 0 0
\(479\) −4405.45 + 7630.47i −0.420230 + 0.727860i −0.995962 0.0897787i \(-0.971384\pi\)
0.575731 + 0.817639i \(0.304717\pi\)
\(480\) 0 0
\(481\) 2879.40 + 4987.26i 0.272950 + 0.472764i
\(482\) 0 0
\(483\) −13929.3 + 753.102i −1.31222 + 0.0709469i
\(484\) 0 0
\(485\) 3428.98 + 5939.16i 0.321035 + 0.556048i
\(486\) 0 0
\(487\) −2959.47 + 5125.96i −0.275373 + 0.476960i −0.970229 0.242189i \(-0.922135\pi\)
0.694856 + 0.719149i \(0.255468\pi\)
\(488\) 0 0
\(489\) 20817.1 1.92512
\(490\) 0 0
\(491\) 13182.5 1.21165 0.605823 0.795600i \(-0.292844\pi\)
0.605823 + 0.795600i \(0.292844\pi\)
\(492\) 0 0
\(493\) 3002.94 5201.24i 0.274332 0.475156i
\(494\) 0 0
\(495\) 3670.67 + 6357.79i 0.333302 + 0.577296i
\(496\) 0 0
\(497\) −3747.14 + 202.593i −0.338193 + 0.0182848i
\(498\) 0 0
\(499\) 9824.53 + 17016.6i 0.881376 + 1.52659i 0.849812 + 0.527086i \(0.176715\pi\)
0.0315639 + 0.999502i \(0.489951\pi\)
\(500\) 0 0
\(501\) 7334.76 12704.2i 0.654077 1.13290i
\(502\) 0 0
\(503\) 2208.83 0.195799 0.0978993 0.995196i \(-0.468788\pi\)
0.0978993 + 0.995196i \(0.468788\pi\)
\(504\) 0 0
\(505\) −2806.19 −0.247275
\(506\) 0 0
\(507\) 6459.84 11188.8i 0.565861 0.980101i
\(508\) 0 0
\(509\) 8126.90 + 14076.2i 0.707698 + 1.22577i 0.965709 + 0.259627i \(0.0835998\pi\)
−0.258010 + 0.966142i \(0.583067\pi\)
\(510\) 0 0
\(511\) −6438.36 + 12687.8i −0.557370 + 1.09839i
\(512\) 0 0
\(513\) −821.460 1422.81i −0.0706985 0.122453i
\(514\) 0 0
\(515\) 4820.62 8349.56i 0.412470 0.714419i
\(516\) 0 0
\(517\) −2174.88 −0.185012
\(518\) 0 0
\(519\) 15196.1 1.28523
\(520\) 0 0
\(521\) 4661.14 8073.33i 0.391955 0.678885i −0.600753 0.799435i \(-0.705132\pi\)
0.992707 + 0.120550i \(0.0384657\pi\)
\(522\) 0 0
\(523\) 6068.10 + 10510.3i 0.507341 + 0.878740i 0.999964 + 0.00849740i \(0.00270484\pi\)
−0.492623 + 0.870243i \(0.663962\pi\)
\(524\) 0 0
\(525\) 2043.86 + 3135.90i 0.169907 + 0.260690i
\(526\) 0 0
\(527\) 5047.47 + 8742.48i 0.417213 + 0.722634i
\(528\) 0 0
\(529\) 1743.42 3019.69i 0.143291 0.248187i
\(530\) 0 0
\(531\) 55.2781 0.00451764
\(532\) 0 0
\(533\) 12418.6 1.00921
\(534\) 0 0
\(535\) 2037.69 3529.38i 0.164667 0.285212i
\(536\) 0 0
\(537\) 14542.6 + 25188.5i 1.16864 + 2.02414i
\(538\) 0 0
\(539\) −5300.40 + 12011.7i −0.423571 + 0.959886i
\(540\) 0 0
\(541\) 3680.89 + 6375.49i 0.292521 + 0.506661i 0.974405 0.224799i \(-0.0721725\pi\)
−0.681884 + 0.731460i \(0.738839\pi\)
\(542\) 0 0
\(543\) −3733.57 + 6466.74i −0.295070 + 0.511076i
\(544\) 0 0
\(545\) 612.225 0.0481189
\(546\) 0 0
\(547\) 18758.5 1.46628 0.733140 0.680077i \(-0.238054\pi\)
0.733140 + 0.680077i \(0.238054\pi\)
\(548\) 0 0
\(549\) 15951.4 27628.6i 1.24005 2.14783i
\(550\) 0 0
\(551\) −1093.74 1894.41i −0.0845640 0.146469i
\(552\) 0 0
\(553\) 6203.83 + 9518.56i 0.477059 + 0.731954i
\(554\) 0 0
\(555\) 4755.99 + 8237.62i 0.363749 + 0.630032i
\(556\) 0 0
\(557\) 6764.63 11716.7i 0.514590 0.891296i −0.485266 0.874366i \(-0.661277\pi\)
0.999857 0.0169301i \(-0.00538926\pi\)
\(558\) 0 0
\(559\) −11687.3 −0.884292
\(560\) 0 0
\(561\) −15200.8 −1.14399
\(562\) 0 0
\(563\) 1145.80 1984.58i 0.0857722 0.148562i −0.819948 0.572438i \(-0.805998\pi\)
0.905720 + 0.423876i \(0.139331\pi\)
\(564\) 0 0
\(565\) −15.5267 26.8930i −0.00115613 0.00200247i
\(566\) 0 0
\(567\) −2458.05 + 4843.98i −0.182060 + 0.358779i
\(568\) 0 0
\(569\) −11906.9 20623.3i −0.877261 1.51946i −0.854334 0.519724i \(-0.826035\pi\)
−0.0229269 0.999737i \(-0.507299\pi\)
\(570\) 0 0
\(571\) −6374.66 + 11041.2i −0.467200 + 0.809215i −0.999298 0.0374685i \(-0.988071\pi\)
0.532098 + 0.846683i \(0.321404\pi\)
\(572\) 0 0
\(573\) 8651.88 0.630781
\(574\) 0 0
\(575\) 2329.19 0.168928
\(576\) 0 0
\(577\) 8245.45 14281.5i 0.594909 1.03041i −0.398650 0.917103i \(-0.630521\pi\)
0.993560 0.113310i \(-0.0361454\pi\)
\(578\) 0 0
\(579\) 658.056 + 1139.79i 0.0472329 + 0.0818099i
\(580\) 0 0
\(581\) −11521.7 + 622.933i −0.822719 + 0.0444812i
\(582\) 0 0
\(583\) −1118.28 1936.92i −0.0794416 0.137597i
\(584\) 0 0
\(585\) −2346.85 + 4064.86i −0.165864 + 0.287284i
\(586\) 0 0
\(587\) 755.669 0.0531342 0.0265671 0.999647i \(-0.491542\pi\)
0.0265671 + 0.999647i \(0.491542\pi\)
\(588\) 0 0
\(589\) 3676.80 0.257216
\(590\) 0 0
\(591\) −2258.20 + 3911.32i −0.157174 + 0.272234i
\(592\) 0 0
\(593\) 9058.20 + 15689.3i 0.627278 + 1.08648i 0.988096 + 0.153841i \(0.0491643\pi\)
−0.360818 + 0.932636i \(0.617502\pi\)
\(594\) 0 0
\(595\) −4542.08 + 245.573i −0.312953 + 0.0169202i
\(596\) 0 0
\(597\) 1862.94 + 3226.71i 0.127714 + 0.221207i
\(598\) 0 0
\(599\) −6681.20 + 11572.2i −0.455737 + 0.789360i −0.998730 0.0503774i \(-0.983958\pi\)
0.542993 + 0.839737i \(0.317291\pi\)
\(600\) 0 0
\(601\) 7760.63 0.526726 0.263363 0.964697i \(-0.415168\pi\)
0.263363 + 0.964697i \(0.415168\pi\)
\(602\) 0 0
\(603\) −6068.87 −0.409857
\(604\) 0 0
\(605\) 335.393 580.917i 0.0225383 0.0390374i
\(606\) 0 0
\(607\) 6318.17 + 10943.4i 0.422482 + 0.731760i 0.996182 0.0873055i \(-0.0278256\pi\)
−0.573700 + 0.819066i \(0.694492\pi\)
\(608\) 0 0
\(609\) 8283.95 16324.8i 0.551203 1.08623i
\(610\) 0 0
\(611\) −695.256 1204.22i −0.0460345 0.0797340i
\(612\) 0 0
\(613\) 2495.30 4321.98i 0.164411 0.284769i −0.772035 0.635580i \(-0.780761\pi\)
0.936446 + 0.350812i \(0.114094\pi\)
\(614\) 0 0
\(615\) 20512.1 1.34493
\(616\) 0 0
\(617\) 3065.36 0.200011 0.100006 0.994987i \(-0.468114\pi\)
0.100006 + 0.994987i \(0.468114\pi\)
\(618\) 0 0
\(619\) 3049.52 5281.93i 0.198014 0.342970i −0.749870 0.661585i \(-0.769884\pi\)
0.947884 + 0.318614i \(0.103218\pi\)
\(620\) 0 0
\(621\) −4277.72 7409.22i −0.276423 0.478779i
\(622\) 0 0
\(623\) −16191.0 24842.0i −1.04122 1.59755i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −2768.23 + 4794.71i −0.176320 + 0.305394i
\(628\) 0 0
\(629\) −11559.0 −0.732732
\(630\) 0 0
\(631\) −14367.3 −0.906425 −0.453212 0.891403i \(-0.649722\pi\)
−0.453212 + 0.891403i \(0.649722\pi\)
\(632\) 0 0
\(633\) 24460.2 42366.3i 1.53587 2.66021i
\(634\) 0 0
\(635\) −1090.22 1888.31i −0.0681321 0.118008i
\(636\) 0 0
\(637\) −8345.20 + 905.030i −0.519072 + 0.0562930i
\(638\) 0 0
\(639\) −3886.15 6731.01i −0.240585 0.416705i
\(640\) 0 0
\(641\) 422.426 731.663i 0.0260294 0.0450842i −0.852717 0.522373i \(-0.825047\pi\)
0.878747 + 0.477289i \(0.158380\pi\)
\(642\) 0 0
\(643\) −10319.6 −0.632918 −0.316459 0.948606i \(-0.602494\pi\)
−0.316459 + 0.948606i \(0.602494\pi\)
\(644\) 0 0
\(645\) −19304.3 −1.17846
\(646\) 0 0
\(647\) 4185.35 7249.23i 0.254317 0.440490i −0.710393 0.703805i \(-0.751483\pi\)
0.964710 + 0.263316i \(0.0848161\pi\)
\(648\) 0 0
\(649\) −27.5805 47.7708i −0.00166815 0.00288932i
\(650\) 0 0
\(651\) 16801.3 + 25778.3i 1.01151 + 1.55197i
\(652\) 0 0
\(653\) 2690.14 + 4659.46i 0.161215 + 0.279233i 0.935305 0.353843i \(-0.115125\pi\)
−0.774090 + 0.633076i \(0.781792\pi\)
\(654\) 0 0
\(655\) 4244.29 7351.32i 0.253188 0.438534i
\(656\) 0 0
\(657\) −29468.4 −1.74988
\(658\) 0 0
\(659\) 26587.2 1.57161 0.785804 0.618475i \(-0.212249\pi\)
0.785804 + 0.618475i \(0.212249\pi\)
\(660\) 0 0
\(661\) −5452.15 + 9443.40i −0.320823 + 0.555682i −0.980658 0.195729i \(-0.937293\pi\)
0.659835 + 0.751411i \(0.270626\pi\)
\(662\) 0 0
\(663\) −4859.31 8416.58i −0.284646 0.493021i
\(664\) 0 0
\(665\) −749.704 + 1477.41i −0.0437177 + 0.0861527i
\(666\) 0 0
\(667\) −5695.59 9865.05i −0.330636 0.572678i
\(668\) 0 0
\(669\) −1302.01 + 2255.16i −0.0752448 + 0.130328i
\(670\) 0 0
\(671\) −31835.2 −1.83157
\(672\) 0 0
\(673\) −17375.9 −0.995233 −0.497616 0.867397i \(-0.665791\pi\)
−0.497616 + 0.867397i \(0.665791\pi\)
\(674\) 0 0
\(675\) −1147.86 + 1988.15i −0.0654534 + 0.113369i
\(676\) 0 0
\(677\) −6861.25 11884.0i −0.389512 0.674654i 0.602872 0.797838i \(-0.294023\pi\)
−0.992384 + 0.123184i \(0.960690\pi\)
\(678\) 0 0
\(679\) −25365.2 + 1371.40i −1.43362 + 0.0775101i
\(680\) 0 0
\(681\) 2583.88 + 4475.42i 0.145396 + 0.251833i
\(682\) 0 0
\(683\) −308.676 + 534.643i −0.0172931 + 0.0299525i −0.874542 0.484949i \(-0.838838\pi\)
0.857249 + 0.514901i \(0.172171\pi\)
\(684\) 0 0
\(685\) −4176.86 −0.232978
\(686\) 0 0
\(687\) 50036.2 2.77875
\(688\) 0 0
\(689\) 714.975 1238.37i 0.0395332 0.0684735i
\(690\) 0 0
\(691\) −10294.4 17830.3i −0.566738 0.981618i −0.996886 0.0788599i \(-0.974872\pi\)
0.430148 0.902758i \(-0.358461\pi\)
\(692\) 0 0
\(693\) −27153.0 + 1468.06i −1.48840 + 0.0804718i
\(694\) 0 0
\(695\) 4844.31 + 8390.58i 0.264396 + 0.457947i
\(696\) 0 0
\(697\) −12463.2 + 21587.0i −0.677301 + 1.17312i
\(698\) 0 0
\(699\) 29524.1 1.59757
\(700\) 0 0
\(701\) −33857.2 −1.82421 −0.912104 0.409958i \(-0.865543\pi\)
−0.912104 + 0.409958i \(0.865543\pi\)
\(702\) 0 0
\(703\) −2105.03 + 3646.02i −0.112934 + 0.195608i
\(704\) 0 0
\(705\) −1148.38 1989.05i −0.0613481 0.106258i
\(706\) 0 0
\(707\) 4703.57 9269.14i 0.250207 0.493072i
\(708\) 0 0
\(709\) 1208.81 + 2093.72i 0.0640309 + 0.110905i 0.896264 0.443522i \(-0.146271\pi\)
−0.832233 + 0.554426i \(0.812938\pi\)
\(710\) 0 0
\(711\) −11766.1 + 20379.5i −0.620625 + 1.07495i
\(712\) 0 0
\(713\) 19146.8 1.00568
\(714\) 0 0
\(715\) 4683.75 0.244982
\(716\) 0 0
\(717\) −18809.9 + 32579.7i −0.979733 + 1.69695i
\(718\) 0 0
\(719\) 8909.26 + 15431.3i 0.462113 + 0.800403i 0.999066 0.0432089i \(-0.0137581\pi\)
−0.536953 + 0.843612i \(0.680425\pi\)
\(720\) 0 0
\(721\) 19499.5 + 29918.1i 1.00721 + 1.54537i
\(722\) 0 0
\(723\) −20228.1 35036.1i −1.04051 1.80222i
\(724\) 0 0
\(725\) −1528.32 + 2647.13i −0.0782902 + 0.135603i
\(726\) 0 0
\(727\) −24410.7 −1.24531 −0.622657 0.782495i \(-0.713947\pi\)
−0.622657 + 0.782495i \(0.713947\pi\)
\(728\) 0 0
\(729\) −31294.9 −1.58995
\(730\) 0 0
\(731\) 11729.3 20315.8i 0.593468 1.02792i
\(732\) 0 0
\(733\) −15856.2 27463.7i −0.798991 1.38389i −0.920274 0.391276i \(-0.872034\pi\)
0.121282 0.992618i \(-0.461299\pi\)
\(734\) 0 0
\(735\) −13784.0 + 1494.87i −0.691744 + 0.0750191i
\(736\) 0 0
\(737\) 3028.01 + 5244.66i 0.151341 + 0.262130i
\(738\) 0 0
\(739\) −12105.7 + 20967.7i −0.602593 + 1.04372i 0.389834 + 0.920885i \(0.372532\pi\)
−0.992427 + 0.122836i \(0.960801\pi\)
\(740\) 0 0
\(741\) −3539.74 −0.175487
\(742\) 0 0
\(743\) −32221.1 −1.59095 −0.795477 0.605983i \(-0.792780\pi\)
−0.795477 + 0.605983i \(0.792780\pi\)
\(744\) 0 0
\(745\) 6148.62 10649.7i 0.302373 0.523726i
\(746\) 0 0
\(747\) −11949.1 20696.5i −0.585268 1.01371i
\(748\) 0 0
\(749\) 8242.46 + 12646.4i 0.402100 + 0.616944i
\(750\) 0 0
\(751\) −11742.2 20338.1i −0.570545 0.988212i −0.996510 0.0834728i \(-0.973399\pi\)
0.425965 0.904739i \(-0.359935\pi\)
\(752\) 0 0
\(753\) −13483.9 + 23354.8i −0.652565 + 1.13028i
\(754\) 0 0
\(755\) −13611.9 −0.656145
\(756\) 0 0
\(757\) 25506.7 1.22465 0.612323 0.790608i \(-0.290235\pi\)
0.612323 + 0.790608i \(0.290235\pi\)
\(758\) 0 0
\(759\) −14415.4 + 24968.3i −0.689390 + 1.19406i
\(760\) 0 0
\(761\) 14956.4 + 25905.2i 0.712442 + 1.23399i 0.963938 + 0.266127i \(0.0857441\pi\)
−0.251496 + 0.967858i \(0.580923\pi\)
\(762\) 0 0
\(763\) −1026.18 + 2022.25i −0.0486895 + 0.0959505i
\(764\) 0 0
\(765\) −4710.59 8158.97i −0.222630 0.385606i
\(766\) 0 0
\(767\) 17.6336 30.5423i 0.000830135 0.00143784i
\(768\) 0 0
\(769\) −615.472 −0.0288615 −0.0144307 0.999896i \(-0.504594\pi\)
−0.0144307 + 0.999896i \(0.504594\pi\)
\(770\) 0 0
\(771\) −32218.6 −1.50496
\(772\) 0 0
\(773\) −926.195 + 1604.22i −0.0430956 + 0.0746438i −0.886769 0.462214i \(-0.847055\pi\)
0.843673 + 0.536857i \(0.180389\pi\)
\(774\) 0 0
\(775\) −2568.87 4449.41i −0.119067 0.206229i
\(776\) 0 0
\(777\) −35181.5 + 1902.13i −1.62436 + 0.0878229i
\(778\) 0 0
\(779\) 4539.39 + 7862.45i 0.208781 + 0.361620i
\(780\) 0 0
\(781\) −3877.92 + 6716.75i −0.177673 + 0.307739i
\(782\) 0 0
\(783\) 11227.5 0.512436
\(784\) 0 0
\(785\) −2069.00 −0.0940711
\(786\) 0 0
\(787\) −10608.8 + 18375.0i −0.480512 + 0.832271i −0.999750 0.0223587i \(-0.992882\pi\)
0.519238 + 0.854630i \(0.326216\pi\)
\(788\) 0 0
\(789\) 7671.78 + 13287.9i 0.346163 + 0.599572i
\(790\) 0 0
\(791\) 114.855 6.20979i 0.00516282 0.000279133i
\(792\) 0 0
\(793\) −10176.9 17626.9i −0.455729 0.789346i
\(794\) 0 0
\(795\) 1180.95 2045.46i 0.0526841 0.0912516i
\(796\) 0 0
\(797\) 16797.7 0.746557 0.373278 0.927719i \(-0.378234\pi\)
0.373278 + 0.927719i \(0.378234\pi\)
\(798\) 0 0
\(799\) 2791.03 0.123579
\(800\) 0 0
\(801\) 30707.8 53187.4i 1.35456 2.34617i
\(802\) 0 0
\(803\) 14703.0 + 25466.3i 0.646148 + 1.11916i
\(804\) 0 0
\(805\) −3904.05 + 7693.56i −0.170931 + 0.336848i
\(806\) 0 0
\(807\) −23679.7 41014.4i −1.03292 1.78907i
\(808\) 0 0
\(809\) −11103.0 + 19230.9i −0.482521 + 0.835751i −0.999799 0.0200667i \(-0.993612\pi\)
0.517278 + 0.855818i \(0.326945\pi\)
\(810\) 0 0
\(811\) 35024.7 1.51650 0.758250 0.651964i \(-0.226054\pi\)
0.758250 + 0.651964i \(0.226054\pi\)
\(812\) 0 0
\(813\) 66741.0 2.87910
\(814\) 0 0
\(815\) 6437.39 11149.9i 0.276677 0.479219i
\(816\) 0 0
\(817\) −4272.08 7399.47i −0.182939 0.316860i
\(818\) 0 0
\(819\) −9493.03 14565.2i −0.405022 0.621427i
\(820\) 0 0
\(821\) 13885.1 + 24049.7i 0.590247 + 1.02234i 0.994199 + 0.107557i \(0.0343028\pi\)
−0.403952 + 0.914780i \(0.632364\pi\)
\(822\) 0 0
\(823\) 1705.89 2954.69i 0.0722523 0.125145i −0.827636 0.561265i \(-0.810315\pi\)
0.899888 + 0.436121i \(0.143648\pi\)
\(824\) 0 0
\(825\) 7736.31 0.326477
\(826\) 0 0
\(827\) 9664.20 0.406357 0.203178 0.979142i \(-0.434873\pi\)
0.203178 + 0.979142i \(0.434873\pi\)
\(828\) 0 0
\(829\) −5668.61 + 9818.31i −0.237489 + 0.411344i −0.959993 0.280023i \(-0.909658\pi\)
0.722504 + 0.691367i \(0.242991\pi\)
\(830\) 0 0
\(831\) 30412.2 + 52675.5i 1.26954 + 2.19891i
\(832\) 0 0
\(833\) 6802.03 15414.6i 0.282925 0.641158i
\(834\) 0 0
\(835\) −4536.32 7857.15i −0.188007 0.325638i
\(836\) 0 0
\(837\) −9435.83 + 16343.3i −0.389666 + 0.674921i
\(838\) 0 0
\(839\) −44881.4 −1.84682 −0.923408 0.383819i \(-0.874609\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(840\) 0 0
\(841\) −9440.11 −0.387064
\(842\) 0 0
\(843\) 14507.4 25127.5i 0.592717 1.02662i
\(844\) 0 0
\(845\) −3995.22 6919.92i −0.162651 0.281719i
\(846\) 0 0
\(847\) 1356.67 + 2081.54i 0.0550362 + 0.0844422i
\(848\) 0 0
\(849\) −797.674 1381.61i −0.0322451 0.0558502i
\(850\) 0 0
\(851\) −10961.8 + 18986.5i −0.441560 + 0.764804i
\(852\) 0 0
\(853\) −21817.2 −0.875741 −0.437871 0.899038i \(-0.644267\pi\)
−0.437871 + 0.899038i \(0.644267\pi\)
\(854\) 0 0
\(855\) −3431.40 −0.137253
\(856\) 0 0
\(857\) −11194.0 + 19388.6i −0.446184 + 0.772814i −0.998134 0.0610636i \(-0.980551\pi\)
0.551950 + 0.833877i \(0.313884\pi\)
\(858\) 0 0
\(859\) −2960.29 5127.38i −0.117583 0.203660i 0.801226 0.598362i \(-0.204181\pi\)
−0.918809 + 0.394702i \(0.870848\pi\)
\(860\) 0 0
\(861\) −34381.3 + 67753.8i −1.36087 + 2.68182i
\(862\) 0 0
\(863\) −1347.96 2334.73i −0.0531692 0.0920917i 0.838216 0.545339i \(-0.183599\pi\)
−0.891385 + 0.453247i \(0.850266\pi\)
\(864\) 0 0
\(865\) 4699.17 8139.21i 0.184713 0.319932i
\(866\) 0 0
\(867\) −20211.8 −0.791729
\(868\) 0 0
\(869\) 23482.4 0.916669
\(870\) 0 0
\(871\) −1935.96 + 3353.18i −0.0753128 + 0.130446i
\(872\) 0 0
\(873\) −26306.2 45563.6i −1.01985 1.76643i
\(874\) 0 0
\(875\) 2311.66 124.982i 0.0893123 0.00482877i
\(876\) 0 0
\(877\) −3933.82 6813.58i −0.151466 0.262347i 0.780301 0.625405i \(-0.215066\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(878\) 0 0
\(879\) 15277.7 26461.7i 0.586239 1.01540i
\(880\) 0 0
\(881\) 17182.7 0.657092 0.328546 0.944488i \(-0.393441\pi\)
0.328546 + 0.944488i \(0.393441\pi\)
\(882\) 0 0
\(883\) 7732.99 0.294718 0.147359 0.989083i \(-0.452923\pi\)
0.147359 + 0.989083i \(0.452923\pi\)
\(884\) 0 0
\(885\) 29.1260 50.4478i 0.00110628 0.00191614i
\(886\) 0 0
\(887\) 19140.5 + 33152.2i 0.724547 + 1.25495i 0.959160 + 0.282864i \(0.0912845\pi\)
−0.234613 + 0.972089i \(0.575382\pi\)
\(888\) 0 0
\(889\) 8064.65 436.024i 0.304252 0.0164497i
\(890\) 0 0
\(891\) 5613.33 + 9722.58i 0.211059 + 0.365565i
\(892\) 0 0
\(893\) 508.278 880.364i 0.0190469 0.0329902i
\(894\) 0 0
\(895\) 17988.3 0.671824
\(896\) 0 0
\(897\) −18433.1 −0.686133
\(898\) 0 0
\(899\) −12563.4 + 21760.4i −0.466087 + 0.807287i
\(900\) 0 0
\(901\) 1435.09 + 2485.66i 0.0530632 + 0.0919081i
\(902\) 0 0
\(903\) 32356.7 63764.1i 1.19243 2.34987i
\(904\) 0 0
\(905\) 2309.10 + 3999.48i 0.0848146 + 0.146903i
\(906\) 0 0
\(907\) 1761.13 3050.36i 0.0644733 0.111671i −0.831987 0.554795i \(-0.812797\pi\)
0.896460 + 0.443124i \(0.146130\pi\)
\(908\) 0 0
\(909\) 21528.3 0.785532
\(910\) 0 0
\(911\) −7101.21 −0.258259 −0.129129 0.991628i \(-0.541218\pi\)
−0.129129 + 0.991628i \(0.541218\pi\)
\(912\) 0 0
\(913\) −11923.8 + 20652.6i −0.432224 + 0.748634i
\(914\) 0 0
\(915\) −16809.6 29115.0i −0.607330 1.05193i
\(916\) 0 0
\(917\) 17168.2 + 26341.2i 0.618259 + 0.948598i
\(918\) 0 0
\(919\) −16853.0 29190.2i −0.604928 1.04777i −0.992063 0.125743i \(-0.959869\pi\)
0.387135 0.922023i \(-0.373465\pi\)
\(920\) 0 0
\(921\) 18168.5 31468.8i 0.650026 1.12588i
\(922\) 0 0
\(923\) −4958.70 −0.176834
\(924\) 0 0
\(925\) 5882.88 0.209111
\(926\) 0 0
\(927\) −36982.5 + 64055.6i −1.31032 + 2.26954i
\(928\) 0 0
\(929\) 17970.7 + 31126.2i 0.634661 + 1.09927i 0.986587 + 0.163237i \(0.0521936\pi\)
−0.351926 + 0.936028i \(0.614473\pi\)
\(930\) 0 0
\(931\) −3623.44 4952.71i −0.127555 0.174349i
\(932\) 0 0
\(933\) 39383.5 + 68214.3i 1.38195 + 2.39361i
\(934\) 0 0
\(935\) −4700.60 + 8141.69i −0.164413 + 0.284772i
\(936\) 0 0
\(937\) −2167.66 −0.0755757 −0.0377878 0.999286i \(-0.512031\pi\)
−0.0377878 + 0.999286i \(0.512031\pi\)
\(938\) 0 0
\(939\) 36915.8 1.28296
\(940\) 0 0
\(941\) −9998.15 + 17317.3i −0.346366 + 0.599924i −0.985601 0.169088i \(-0.945918\pi\)
0.639235 + 0.769011i \(0.279251\pi\)
\(942\) 0 0
\(943\) 23638.7 + 40943.4i 0.816311 + 1.41389i
\(944\) 0 0
\(945\) −4643.10 7123.92i −0.159831 0.245229i
\(946\) 0 0
\(947\) 6864.50 + 11889.7i 0.235550 + 0.407985i 0.959433 0.281938i \(-0.0909774\pi\)
−0.723882 + 0.689924i \(0.757644\pi\)
\(948\) 0 0
\(949\) −9400.38 + 16281.9i −0.321548 + 0.556938i
\(950\) 0 0
\(951\) 74935.5 2.55515
\(952\) 0 0
\(953\) −10076.1 −0.342495 −0.171248 0.985228i \(-0.554780\pi\)
−0.171248 + 0.985228i \(0.554780\pi\)
\(954\) 0 0
\(955\) 2675.46 4634.04i 0.0906555 0.157020i
\(956\) 0 0
\(957\) −18917.7 32766.4i −0.638999 1.10678i
\(958\) 0 0
\(959\) 7001.02 13796.6i 0.235740 0.464564i
\(960\) 0 0
\(961\) −6221.61 10776.1i −0.208842 0.361725i
\(962\) 0 0
\(963\) −15632.6 + 27076.4i −0.523108 + 0.906049i
\(964\) 0 0
\(965\) 813.975 0.0271532
\(966\) 0 0
\(967\) 24434.2 0.812566 0.406283 0.913747i \(-0.366825\pi\)
0.406283 + 0.913747i \(0.366825\pi\)
\(968\) 0 0
\(969\) 3552.48 6153.07i 0.117773 0.203989i
\(970\) 0 0
\(971\) 9328.53 + 16157.5i 0.308308 + 0.534004i 0.977992 0.208641i \(-0.0669041\pi\)
−0.669685 + 0.742646i \(0.733571\pi\)
\(972\) 0 0
\(973\) −35834.8 + 1937.45i −1.18069 + 0.0638353i
\(974\) 0 0
\(975\) 2473.11 + 4283.55i 0.0812337 + 0.140701i
\(976\) 0 0
\(977\) 26037.2 45097.7i 0.852614 1.47677i −0.0262279 0.999656i \(-0.508350\pi\)
0.878841 0.477114i \(-0.158317\pi\)
\(978\) 0 0
\(979\) −61285.4 −2.00071
\(980\) 0 0
\(981\) −4696.82 −0.152862
\(982\) 0 0
\(983\) −4602.58 + 7971.90i −0.149338 + 0.258662i −0.930983 0.365062i \(-0.881048\pi\)
0.781645 + 0.623724i \(0.214381\pi\)
\(984\) 0 0
\(985\) 1396.63 + 2419.03i 0.0451780 + 0.0782506i
\(986\) 0 0
\(987\) 8494.89 459.286i 0.273957 0.0148118i
\(988\) 0 0
\(989\) −22246.7 38532.4i −0.715272 1.23889i
\(990\) 0 0
\(991\) 10542.3 18259.8i 0.337929 0.585311i −0.646114 0.763241i \(-0.723607\pi\)
0.984043 + 0.177930i \(0.0569402\pi\)
\(992\) 0 0
\(993\) 7936.79 0.253642
\(994\) 0 0
\(995\) 2304.35 0.0734199
\(996\) 0 0
\(997\) −26388.0 + 45705.3i −0.838231 + 1.45186i 0.0531416 + 0.998587i \(0.483077\pi\)
−0.891373 + 0.453271i \(0.850257\pi\)
\(998\) 0 0
\(999\) −10804.3 18713.6i −0.342176 0.592666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.q.p.81.1 12
4.3 odd 2 280.4.q.e.81.6 12
7.2 even 3 inner 560.4.q.p.401.1 12
28.3 even 6 1960.4.a.bb.1.6 6
28.11 odd 6 1960.4.a.w.1.1 6
28.23 odd 6 280.4.q.e.121.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.q.e.81.6 12 4.3 odd 2
280.4.q.e.121.6 yes 12 28.23 odd 6
560.4.q.p.81.1 12 1.1 even 1 trivial
560.4.q.p.401.1 12 7.2 even 3 inner
1960.4.a.w.1.1 6 28.11 odd 6
1960.4.a.bb.1.6 6 28.3 even 6