L(s) = 1 | − 6.24·3-s − 25·5-s − 49·7-s − 203.·9-s − 89.4·11-s + 459.·13-s + 156.·15-s + 701.·17-s + 396.·19-s + 306.·21-s + 4.31e3·23-s + 625·25-s + 2.79e3·27-s − 1.43e3·29-s − 3.66e3·31-s + 558.·33-s + 1.22e3·35-s − 3.16e3·37-s − 2.86e3·39-s − 6.35e3·41-s + 1.55e4·43-s + 5.09e3·45-s + 3.99e3·47-s + 2.40e3·49-s − 4.38e3·51-s − 2.44e4·53-s + 2.23e3·55-s + ⋯ |
L(s) = 1 | − 0.400·3-s − 0.447·5-s − 0.377·7-s − 0.839·9-s − 0.222·11-s + 0.753·13-s + 0.179·15-s + 0.588·17-s + 0.251·19-s + 0.151·21-s + 1.70·23-s + 0.200·25-s + 0.737·27-s − 0.317·29-s − 0.685·31-s + 0.0893·33-s + 0.169·35-s − 0.380·37-s − 0.302·39-s − 0.590·41-s + 1.27·43-s + 0.375·45-s + 0.263·47-s + 0.142·49-s − 0.235·51-s − 1.19·53-s + 0.0996·55-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(560s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+25T |
| 7 | 1+49T |
good | 3 | 1+6.24T+243T2 |
| 11 | 1+89.4T+1.61e5T2 |
| 13 | 1−459.T+3.71e5T2 |
| 17 | 1−701.T+1.41e6T2 |
| 19 | 1−396.T+2.47e6T2 |
| 23 | 1−4.31e3T+6.43e6T2 |
| 29 | 1+1.43e3T+2.05e7T2 |
| 31 | 1+3.66e3T+2.86e7T2 |
| 37 | 1+3.16e3T+6.93e7T2 |
| 41 | 1+6.35e3T+1.15e8T2 |
| 43 | 1−1.55e4T+1.47e8T2 |
| 47 | 1−3.99e3T+2.29e8T2 |
| 53 | 1+2.44e4T+4.18e8T2 |
| 59 | 1−2.39e3T+7.14e8T2 |
| 61 | 1+2.10e4T+8.44e8T2 |
| 67 | 1+853.T+1.35e9T2 |
| 71 | 1−1.37e3T+1.80e9T2 |
| 73 | 1−1.22e4T+2.07e9T2 |
| 79 | 1−5.10e4T+3.07e9T2 |
| 83 | 1+1.76e4T+3.93e9T2 |
| 89 | 1+1.83e4T+5.58e9T2 |
| 97 | 1+1.03e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.437545750775655891767029553858, −8.705181032959064670184164425361, −7.74413190142952824025696488517, −6.78251490105059860401189540159, −5.80237491974682400045490602115, −5.01225265515751654584688826594, −3.65798524363005277916745848626, −2.82655552320397336928600724721, −1.13744468595766172569024831670, 0,
1.13744468595766172569024831670, 2.82655552320397336928600724721, 3.65798524363005277916745848626, 5.01225265515751654584688826594, 5.80237491974682400045490602115, 6.78251490105059860401189540159, 7.74413190142952824025696488517, 8.705181032959064670184164425361, 9.437545750775655891767029553858