Properties

Label 560.6.a.s
Level 560560
Weight 66
Character orbit 560.a
Self dual yes
Analytic conductor 89.81589.815
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 89.814939095389.8149390953
Analytic rank: 11
Dimension: 33
Coefficient field: Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3463x1890 x^{3} - 463x - 1890 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 280)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β12)q325q549q7+(β2+2β1+70)q9+(β2+4β1+193)q11+(2β2+23β1+26)q13+(25β1+50)q15+(4β213β1416)q17++(116β2+750β1+52228)q99+O(q100) q + (\beta_1 - 2) q^{3} - 25 q^{5} - 49 q^{7} + (\beta_{2} + 2 \beta_1 + 70) q^{9} + (\beta_{2} + 4 \beta_1 + 193) q^{11} + ( - 2 \beta_{2} + 23 \beta_1 + 26) q^{13} + ( - 25 \beta_1 + 50) q^{15} + ( - 4 \beta_{2} - 13 \beta_1 - 416) q^{17}+ \cdots + (116 \beta_{2} + 750 \beta_1 + 52228) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q6q375q5147q7+209q9+578q11+80q13+150q151244q17944q19+294q211096q23+1875q25+3006q27+1868q29+6620q31+2662q33++156568q99+O(q100) 3 q - 6 q^{3} - 75 q^{5} - 147 q^{7} + 209 q^{9} + 578 q^{11} + 80 q^{13} + 150 q^{15} - 1244 q^{17} - 944 q^{19} + 294 q^{21} - 1096 q^{23} + 1875 q^{25} + 3006 q^{27} + 1868 q^{29} + 6620 q^{31} + 2662 q^{33}+ \cdots + 156568 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3463x1890 x^{3} - 463x - 1890 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν26ν309 \nu^{2} - 6\nu - 309 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+6β1+309 \beta_{2} + 6\beta _1 + 309 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−19.0769
−4.24759
23.3245
0 −21.0769 0 −25.0000 0 −49.0000 0 201.235 0
1.2 0 −6.24759 0 −25.0000 0 −49.0000 0 −203.968 0
1.3 0 21.3245 0 −25.0000 0 −49.0000 0 211.733 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.s 3
4.b odd 2 1 280.6.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.6.a.e 3 4.b odd 2 1
560.6.a.s 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T33+6T32451T32808 T_{3}^{3} + 6T_{3}^{2} - 451T_{3} - 2808 acting on S6new(Γ0(560))S_{6}^{\mathrm{new}}(\Gamma_0(560)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+6T2+2808 T^{3} + 6 T^{2} + \cdots - 2808 Copy content Toggle raw display
55 (T+25)3 (T + 25)^{3} Copy content Toggle raw display
77 (T+49)3 (T + 49)^{3} Copy content Toggle raw display
1111 T3578T2++9760932 T^{3} - 578 T^{2} + \cdots + 9760932 Copy content Toggle raw display
1313 T380T2++128496494 T^{3} - 80 T^{2} + \cdots + 128496494 Copy content Toggle raw display
1717 T3+1244T2+651843290 T^{3} + 1244 T^{2} + \cdots - 651843290 Copy content Toggle raw display
1919 T3++1721529888 T^{3} + \cdots + 1721529888 Copy content Toggle raw display
2323 T3+31363349376 T^{3} + \cdots - 31363349376 Copy content Toggle raw display
2929 T3++3100258778 T^{3} + \cdots + 3100258778 Copy content Toggle raw display
3131 T3++16721033600 T^{3} + \cdots + 16721033600 Copy content Toggle raw display
3737 T3+15436371144 T^{3} + \cdots - 15436371144 Copy content Toggle raw display
4141 T3+330620399712 T^{3} + \cdots - 330620399712 Copy content Toggle raw display
4343 T3++1675236784 T^{3} + \cdots + 1675236784 Copy content Toggle raw display
4747 T3+1323866448632 T^{3} + \cdots - 1323866448632 Copy content Toggle raw display
5353 T3+13966928161632 T^{3} + \cdots - 13966928161632 Copy content Toggle raw display
5959 T3+363808567296 T^{3} + \cdots - 363808567296 Copy content Toggle raw display
6161 T3+4786876164960 T^{3} + \cdots - 4786876164960 Copy content Toggle raw display
6767 T3++705690174528 T^{3} + \cdots + 705690174528 Copy content Toggle raw display
7171 T3+336586973184 T^{3} + \cdots - 336586973184 Copy content Toggle raw display
7373 T3+3081736975464 T^{3} + \cdots - 3081736975464 Copy content Toggle raw display
7979 T3++116381435931432 T^{3} + \cdots + 116381435931432 Copy content Toggle raw display
8383 T3+41224716201984 T^{3} + \cdots - 41224716201984 Copy content Toggle raw display
8989 T3++175059765854496 T^{3} + \cdots + 175059765854496 Copy content Toggle raw display
9797 T3+426037755101066 T^{3} + \cdots - 426037755101066 Copy content Toggle raw display
show more
show less