L(s) = 1 | − 1.73·2-s + 1.99·4-s − 7-s − 1.73·8-s + 1.73·11-s + 1.73·14-s + 0.999·16-s − 2.99·22-s + 25-s − 1.99·28-s + 37-s + 43-s + 3.46·44-s + 49-s − 1.73·50-s + 1.73·53-s + 1.73·56-s − 1.00·64-s − 67-s − 1.73·71-s − 1.73·74-s − 1.73·77-s − 79-s − 1.73·86-s − 2.99·88-s − 1.73·98-s + 1.99·100-s + ⋯ |
L(s) = 1 | − 1.73·2-s + 1.99·4-s − 7-s − 1.73·8-s + 1.73·11-s + 1.73·14-s + 0.999·16-s − 2.99·22-s + 25-s − 1.99·28-s + 37-s + 43-s + 3.46·44-s + 49-s − 1.73·50-s + 1.73·53-s + 1.73·56-s − 1.00·64-s − 67-s − 1.73·71-s − 1.73·74-s − 1.73·77-s − 79-s − 1.73·86-s − 2.99·88-s − 1.73·98-s + 1.99·100-s + ⋯ |
Λ(s)=(=(567s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(567s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
567
= 34⋅7
|
Sign: |
1
|
Analytic conductor: |
0.282969 |
Root analytic conductor: |
0.531949 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ567(244,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 567, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.4159967336 |
L(21) |
≈ |
0.4159967336 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+T |
good | 2 | 1+1.73T+T2 |
| 5 | 1−T2 |
| 11 | 1−1.73T+T2 |
| 13 | 1−T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1−T+T2 |
| 41 | 1−T2 |
| 43 | 1−T+T2 |
| 47 | 1−T2 |
| 53 | 1−1.73T+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+T+T2 |
| 71 | 1+1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1+T+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65655710474212145386142787143, −9.869837757445742534581493883818, −9.135096920506841633084177805828, −8.712448766472471633899433084785, −7.43575546979320228008489387266, −6.74613410204020087286201809739, −6.01180283237861809057355223694, −4.09182102344938789480164144096, −2.73761425256176880608674184749, −1.17964753789132369652410274054,
1.17964753789132369652410274054, 2.73761425256176880608674184749, 4.09182102344938789480164144096, 6.01180283237861809057355223694, 6.74613410204020087286201809739, 7.43575546979320228008489387266, 8.712448766472471633899433084785, 9.135096920506841633084177805828, 9.869837757445742534581493883818, 10.65655710474212145386142787143