Properties

Label 567.1.d.c
Level 567567
Weight 11
Character orbit 567.d
Self dual yes
Analytic conductor 0.2830.283
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,1,Mod(244,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.244");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 567=347 567 = 3^{4} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 567.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.2829698621630.282969862163
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.6751269.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq2+2q4q7βq8+βq11+βq14+q163q22+q252q28+q37+q43+2βq44+q49βq50+βq53+βq56+βq98+O(q100) q - \beta q^{2} + 2 q^{4} - q^{7} - \beta q^{8} + \beta q^{11} + \beta q^{14} + q^{16} - 3 q^{22} + q^{25} - 2 q^{28} + q^{37} + q^{43} + 2 \beta q^{44} + q^{49} - \beta q^{50} + \beta q^{53} + \beta q^{56} + \cdots - \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q42q7+2q166q22+2q254q28+2q37+2q43+2q492q642q672q796q88+O(q100) 2 q + 4 q^{4} - 2 q^{7} + 2 q^{16} - 6 q^{22} + 2 q^{25} - 4 q^{28} + 2 q^{37} + 2 q^{43} + 2 q^{49} - 2 q^{64} - 2 q^{67} - 2 q^{79} - 6 q^{88}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/567Z)×\left(\mathbb{Z}/567\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
244.1
1.73205
−1.73205
−1.73205 0 2.00000 0 0 −1.00000 −1.73205 0 0
244.2 1.73205 0 2.00000 0 0 −1.00000 1.73205 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
3.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.1.d.c 2
3.b odd 2 1 inner 567.1.d.c 2
7.b odd 2 1 CM 567.1.d.c 2
7.c even 3 2 3969.1.m.c 4
7.d odd 6 2 3969.1.m.c 4
9.c even 3 2 567.1.l.d 4
9.d odd 6 2 567.1.l.d 4
21.c even 2 1 inner 567.1.d.c 2
21.g even 6 2 3969.1.m.c 4
21.h odd 6 2 3969.1.m.c 4
63.g even 3 2 3969.1.k.e 4
63.h even 3 2 3969.1.t.e 4
63.i even 6 2 3969.1.t.e 4
63.j odd 6 2 3969.1.t.e 4
63.k odd 6 2 3969.1.k.e 4
63.l odd 6 2 567.1.l.d 4
63.n odd 6 2 3969.1.k.e 4
63.o even 6 2 567.1.l.d 4
63.s even 6 2 3969.1.k.e 4
63.t odd 6 2 3969.1.t.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
567.1.d.c 2 1.a even 1 1 trivial
567.1.d.c 2 3.b odd 2 1 inner
567.1.d.c 2 7.b odd 2 1 CM
567.1.d.c 2 21.c even 2 1 inner
567.1.l.d 4 9.c even 3 2
567.1.l.d 4 9.d odd 6 2
567.1.l.d 4 63.l odd 6 2
567.1.l.d 4 63.o even 6 2
3969.1.k.e 4 63.g even 3 2
3969.1.k.e 4 63.k odd 6 2
3969.1.k.e 4 63.n odd 6 2
3969.1.k.e 4 63.s even 6 2
3969.1.m.c 4 7.c even 3 2
3969.1.m.c 4 7.d odd 6 2
3969.1.m.c 4 21.g even 6 2
3969.1.m.c 4 21.h odd 6 2
3969.1.t.e 4 63.h even 3 2
3969.1.t.e 4 63.i even 6 2
3969.1.t.e 4 63.j odd 6 2
3969.1.t.e 4 63.t odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T223 T_{2}^{2} - 3 acting on S1new(567,[χ])S_{1}^{\mathrm{new}}(567, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T23 T^{2} - 3 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1111 T23 T^{2} - 3 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T23 T^{2} - 3 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
7171 T23 T^{2} - 3 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less