Properties

Label 2-567-63.4-c1-0-21
Degree 22
Conductor 567567
Sign 0.474+0.880i0.474 + 0.880i
Analytic cond. 4.527514.52751
Root an. cond. 2.127792.12779
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.29 + 2.24i)2-s + (−2.34 − 4.06i)4-s + 2.28·5-s + (−2.08 − 1.63i)7-s + 6.97·8-s + (−2.95 + 5.11i)10-s − 2.95·11-s + (−2.13 + 3.69i)13-s + (6.34 − 2.56i)14-s + (−4.32 + 7.49i)16-s + (0.764 − 1.32i)17-s + (−3.69 − 6.39i)19-s + (−5.35 − 9.28i)20-s + (3.82 − 6.62i)22-s − 6.15·23-s + ⋯
L(s)  = 1  + (−0.914 + 1.58i)2-s + (−1.17 − 2.03i)4-s + 1.02·5-s + (−0.787 − 0.616i)7-s + 2.46·8-s + (−0.934 + 1.61i)10-s − 0.891·11-s + (−0.591 + 1.02i)13-s + (1.69 − 0.684i)14-s + (−1.08 + 1.87i)16-s + (0.185 − 0.321i)17-s + (−0.846 − 1.46i)19-s + (−1.19 − 2.07i)20-s + (0.815 − 1.41i)22-s − 1.28·23-s + ⋯

Functional equation

Λ(s)=(567s/2ΓC(s)L(s)=((0.474+0.880i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.474 + 0.880i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(567s/2ΓC(s+1/2)L(s)=((0.474+0.880i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.474 + 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 567567    =    3473^{4} \cdot 7
Sign: 0.474+0.880i0.474 + 0.880i
Analytic conductor: 4.527514.52751
Root analytic conductor: 2.127792.12779
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ567(109,)\chi_{567} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 567, ( :1/2), 0.474+0.880i)(2,\ 567,\ (\ :1/2),\ 0.474 + 0.880i)

Particular Values

L(1)L(1) \approx 0.2069080.123509i0.206908 - 0.123509i
L(12)L(\frac12) \approx 0.2069080.123509i0.206908 - 0.123509i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(2.08+1.63i)T 1 + (2.08 + 1.63i)T
good2 1+(1.292.24i)T+(11.73i)T2 1 + (1.29 - 2.24i)T + (-1 - 1.73i)T^{2}
5 12.28T+5T2 1 - 2.28T + 5T^{2}
11 1+2.95T+11T2 1 + 2.95T + 11T^{2}
13 1+(2.133.69i)T+(6.511.2i)T2 1 + (2.13 - 3.69i)T + (-6.5 - 11.2i)T^{2}
17 1+(0.764+1.32i)T+(8.514.7i)T2 1 + (-0.764 + 1.32i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.69+6.39i)T+(9.5+16.4i)T2 1 + (3.69 + 6.39i)T + (-9.5 + 16.4i)T^{2}
23 1+6.15T+23T2 1 + 6.15T + 23T^{2}
29 1+(1.172.02i)T+(14.5+25.1i)T2 1 + (-1.17 - 2.02i)T + (-14.5 + 25.1i)T^{2}
31 1+(3.11+5.38i)T+(15.5+26.8i)T2 1 + (3.11 + 5.38i)T + (-15.5 + 26.8i)T^{2}
37 1+(3.58+6.21i)T+(18.5+32.0i)T2 1 + (3.58 + 6.21i)T + (-18.5 + 32.0i)T^{2}
41 1+(3.94+6.83i)T+(20.535.5i)T2 1 + (-3.94 + 6.83i)T + (-20.5 - 35.5i)T^{2}
43 1+(0.417+0.722i)T+(21.5+37.2i)T2 1 + (0.417 + 0.722i)T + (-21.5 + 37.2i)T^{2}
47 1+(2.915.04i)T+(23.540.7i)T2 1 + (2.91 - 5.04i)T + (-23.5 - 40.7i)T^{2}
53 1+(3.716.44i)T+(26.545.8i)T2 1 + (3.71 - 6.44i)T + (-26.5 - 45.8i)T^{2}
59 1+(2.314.00i)T+(29.5+51.0i)T2 1 + (-2.31 - 4.00i)T + (-29.5 + 51.0i)T^{2}
61 1+(3.56+6.17i)T+(30.552.8i)T2 1 + (-3.56 + 6.17i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.662.87i)T+(33.5+58.0i)T2 1 + (-1.66 - 2.87i)T + (-33.5 + 58.0i)T^{2}
71 10.160T+71T2 1 - 0.160T + 71T^{2}
73 1+(0.190+0.329i)T+(36.563.2i)T2 1 + (-0.190 + 0.329i)T + (-36.5 - 63.2i)T^{2}
79 1+(3.97+6.88i)T+(39.568.4i)T2 1 + (-3.97 + 6.88i)T + (-39.5 - 68.4i)T^{2}
83 1+(2.14+3.72i)T+(41.5+71.8i)T2 1 + (2.14 + 3.72i)T + (-41.5 + 71.8i)T^{2}
89 1+(3.025.24i)T+(44.5+77.0i)T2 1 + (-3.02 - 5.24i)T + (-44.5 + 77.0i)T^{2}
97 1+(0.6611.14i)T+(48.5+84.0i)T2 1 + (-0.661 - 1.14i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.13157261686031503306013795956, −9.486778985976792623575299908520, −8.949342026809977178739443277229, −7.70864135860045406087514511902, −7.02382245588953677847017341399, −6.26791318496112858642434691737, −5.47141299191055090886011923026, −4.37605729086767905638561359002, −2.22175572953440850901330972208, −0.17216227046461902905540869565, 1.81987741576025857086640531223, 2.66073305498472674897598189038, 3.65695191168223132791147927480, 5.28393469457247548529574255192, 6.26289742640017041865197920180, 7.930123131962110496063968360083, 8.448051118797600015026515261813, 9.622748764108280806936781684594, 10.14012119807402988016608843101, 10.40705756575758765177965035743

Graph of the ZZ-function along the critical line