Properties

Label 567.2.g.l.109.1
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-1.14160 + 0.834713i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.l.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29368 + 2.24073i) q^{2} +(-2.34723 - 4.06553i) q^{4} +2.28320 q^{5} +(-2.08382 - 1.63024i) q^{7} +6.97158 q^{8} +(-2.95374 + 5.11603i) q^{10} -2.95632 q^{11} +(-2.13422 + 3.69657i) q^{13} +(6.34873 - 2.56025i) q^{14} +(-4.32455 + 7.49033i) q^{16} +(0.764218 - 1.32366i) q^{17} +(-3.69033 - 6.39184i) q^{19} +(-5.35921 - 9.28243i) q^{20} +(3.82455 - 6.62431i) q^{22} -6.15202 q^{23} +0.213017 q^{25} +(-5.52200 - 9.56439i) q^{26} +(-1.73659 + 12.2984i) q^{28} +(1.17019 + 2.02683i) q^{29} +(-3.11065 - 5.38780i) q^{31} +(-4.21761 - 7.30512i) q^{32} +(1.97731 + 3.42480i) q^{34} +(-4.75779 - 3.72218i) q^{35} +(-3.58796 - 6.21453i) q^{37} +19.0965 q^{38} +15.9175 q^{40} +(3.94584 - 6.83440i) q^{41} +(-0.417061 - 0.722372i) q^{43} +(6.93918 + 12.0190i) q^{44} +(7.95876 - 13.7850i) q^{46} +(-2.91322 + 5.04584i) q^{47} +(1.68461 + 6.79427i) q^{49} +(-0.275576 + 0.477312i) q^{50} +20.0380 q^{52} +(-3.71826 + 6.44021i) q^{53} -6.74989 q^{55} +(-14.5275 - 11.3654i) q^{56} -6.05542 q^{58} +(2.31179 + 4.00414i) q^{59} +(3.56527 - 6.17523i) q^{61} +16.0968 q^{62} +4.52683 q^{64} +(-4.87285 + 8.44003i) q^{65} +(1.66262 + 2.87974i) q^{67} -7.17519 q^{68} +(14.4954 - 5.84557i) q^{70} +0.160242 q^{71} +(0.190329 - 0.329659i) q^{73} +18.5667 q^{74} +(-17.3241 + 30.0063i) q^{76} +(6.16045 + 4.81953i) q^{77} +(3.97731 - 6.88891i) q^{79} +(-9.87382 + 17.1020i) q^{80} +(10.2093 + 17.6831i) q^{82} +(-2.14900 - 3.72218i) q^{83} +(1.74486 - 3.02219i) q^{85} +2.15818 q^{86} -20.6102 q^{88} +(3.02828 + 5.24514i) q^{89} +(10.4736 - 4.22370i) q^{91} +(14.4402 + 25.0112i) q^{92} +(-7.53756 - 13.0554i) q^{94} +(-8.42577 - 14.5939i) q^{95} +(0.661044 + 1.14496i) q^{97} +(-17.4034 - 5.01487i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29368 + 2.24073i −0.914772 + 1.58443i −0.107538 + 0.994201i \(0.534297\pi\)
−0.807234 + 0.590231i \(0.799037\pi\)
\(3\) 0 0
\(4\) −2.34723 4.06553i −1.17362 2.03276i
\(5\) 2.28320 1.02108 0.510540 0.859854i \(-0.329446\pi\)
0.510540 + 0.859854i \(0.329446\pi\)
\(6\) 0 0
\(7\) −2.08382 1.63024i −0.787610 0.616174i
\(8\) 6.97158 2.46482
\(9\) 0 0
\(10\) −2.95374 + 5.11603i −0.934055 + 1.61783i
\(11\) −2.95632 −0.891365 −0.445682 0.895191i \(-0.647039\pi\)
−0.445682 + 0.895191i \(0.647039\pi\)
\(12\) 0 0
\(13\) −2.13422 + 3.69657i −0.591925 + 1.02524i 0.402048 + 0.915619i \(0.368299\pi\)
−0.993973 + 0.109626i \(0.965035\pi\)
\(14\) 6.34873 2.56025i 1.69677 0.684256i
\(15\) 0 0
\(16\) −4.32455 + 7.49033i −1.08114 + 1.87258i
\(17\) 0.764218 1.32366i 0.185350 0.321036i −0.758344 0.651854i \(-0.773991\pi\)
0.943694 + 0.330818i \(0.107325\pi\)
\(18\) 0 0
\(19\) −3.69033 6.39184i −0.846619 1.46639i −0.884207 0.467095i \(-0.845301\pi\)
0.0375879 0.999293i \(-0.488033\pi\)
\(20\) −5.35921 9.28243i −1.19836 2.07561i
\(21\) 0 0
\(22\) 3.82455 6.62431i 0.815396 1.41231i
\(23\) −6.15202 −1.28278 −0.641392 0.767213i \(-0.721643\pi\)
−0.641392 + 0.767213i \(0.721643\pi\)
\(24\) 0 0
\(25\) 0.213017 0.0426033
\(26\) −5.52200 9.56439i −1.08295 1.87573i
\(27\) 0 0
\(28\) −1.73659 + 12.2984i −0.328184 + 2.32418i
\(29\) 1.17019 + 2.02683i 0.217299 + 0.376372i 0.953981 0.299866i \(-0.0969421\pi\)
−0.736683 + 0.676239i \(0.763609\pi\)
\(30\) 0 0
\(31\) −3.11065 5.38780i −0.558689 0.967677i −0.997606 0.0691500i \(-0.977971\pi\)
0.438918 0.898527i \(-0.355362\pi\)
\(32\) −4.21761 7.30512i −0.745575 1.29137i
\(33\) 0 0
\(34\) 1.97731 + 3.42480i 0.339106 + 0.587349i
\(35\) −4.75779 3.72218i −0.804212 0.629163i
\(36\) 0 0
\(37\) −3.58796 6.21453i −0.589857 1.02166i −0.994251 0.107077i \(-0.965851\pi\)
0.404394 0.914585i \(-0.367483\pi\)
\(38\) 19.0965 3.09786
\(39\) 0 0
\(40\) 15.9175 2.51678
\(41\) 3.94584 6.83440i 0.616237 1.06735i −0.373929 0.927457i \(-0.621990\pi\)
0.990166 0.139897i \(-0.0446770\pi\)
\(42\) 0 0
\(43\) −0.417061 0.722372i −0.0636013 0.110161i 0.832471 0.554068i \(-0.186925\pi\)
−0.896073 + 0.443907i \(0.853592\pi\)
\(44\) 6.93918 + 12.0190i 1.04612 + 1.81193i
\(45\) 0 0
\(46\) 7.95876 13.7850i 1.17346 2.03248i
\(47\) −2.91322 + 5.04584i −0.424936 + 0.736011i −0.996414 0.0846058i \(-0.973037\pi\)
0.571478 + 0.820617i \(0.306370\pi\)
\(48\) 0 0
\(49\) 1.68461 + 6.79427i 0.240659 + 0.970610i
\(50\) −0.275576 + 0.477312i −0.0389724 + 0.0675021i
\(51\) 0 0
\(52\) 20.0380 2.77877
\(53\) −3.71826 + 6.44021i −0.510742 + 0.884631i 0.489180 + 0.872183i \(0.337296\pi\)
−0.999923 + 0.0124487i \(0.996037\pi\)
\(54\) 0 0
\(55\) −6.74989 −0.910154
\(56\) −14.5275 11.3654i −1.94132 1.51876i
\(57\) 0 0
\(58\) −6.05542 −0.795115
\(59\) 2.31179 + 4.00414i 0.300970 + 0.521295i 0.976356 0.216170i \(-0.0693564\pi\)
−0.675386 + 0.737464i \(0.736023\pi\)
\(60\) 0 0
\(61\) 3.56527 6.17523i 0.456486 0.790657i −0.542286 0.840194i \(-0.682441\pi\)
0.998772 + 0.0495366i \(0.0157744\pi\)
\(62\) 16.0968 2.04429
\(63\) 0 0
\(64\) 4.52683 0.565853
\(65\) −4.87285 + 8.44003i −0.604403 + 1.04686i
\(66\) 0 0
\(67\) 1.66262 + 2.87974i 0.203121 + 0.351816i 0.949533 0.313669i \(-0.101558\pi\)
−0.746411 + 0.665485i \(0.768225\pi\)
\(68\) −7.17519 −0.870120
\(69\) 0 0
\(70\) 14.4954 5.84557i 1.73254 0.698680i
\(71\) 0.160242 0.0190172 0.00950860 0.999955i \(-0.496973\pi\)
0.00950860 + 0.999955i \(0.496973\pi\)
\(72\) 0 0
\(73\) 0.190329 0.329659i 0.0222763 0.0385837i −0.854672 0.519168i \(-0.826242\pi\)
0.876949 + 0.480584i \(0.159575\pi\)
\(74\) 18.5667 2.15834
\(75\) 0 0
\(76\) −17.3241 + 30.0063i −1.98721 + 3.44196i
\(77\) 6.16045 + 4.81953i 0.702048 + 0.549236i
\(78\) 0 0
\(79\) 3.97731 6.88891i 0.447483 0.775063i −0.550739 0.834678i \(-0.685654\pi\)
0.998221 + 0.0596151i \(0.0189873\pi\)
\(80\) −9.87382 + 17.1020i −1.10393 + 1.91206i
\(81\) 0 0
\(82\) 10.2093 + 17.6831i 1.12743 + 1.95277i
\(83\) −2.14900 3.72218i −0.235883 0.408562i 0.723646 0.690172i \(-0.242465\pi\)
−0.959529 + 0.281610i \(0.909132\pi\)
\(84\) 0 0
\(85\) 1.74486 3.02219i 0.189257 0.327803i
\(86\) 2.15818 0.232723
\(87\) 0 0
\(88\) −20.6102 −2.19706
\(89\) 3.02828 + 5.24514i 0.320997 + 0.555984i 0.980694 0.195548i \(-0.0626486\pi\)
−0.659697 + 0.751532i \(0.729315\pi\)
\(90\) 0 0
\(91\) 10.4736 4.22370i 1.09794 0.442764i
\(92\) 14.4402 + 25.0112i 1.50550 + 2.60760i
\(93\) 0 0
\(94\) −7.53756 13.0554i −0.777440 1.34657i
\(95\) −8.42577 14.5939i −0.864466 1.49730i
\(96\) 0 0
\(97\) 0.661044 + 1.14496i 0.0671189 + 0.116253i 0.897632 0.440746i \(-0.145286\pi\)
−0.830513 + 0.556999i \(0.811953\pi\)
\(98\) −17.4034 5.01487i −1.75801 0.506579i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −18.1620 −1.80719 −0.903594 0.428389i \(-0.859081\pi\)
−0.903594 + 0.428389i \(0.859081\pi\)
\(102\) 0 0
\(103\) 13.5351 1.33365 0.666827 0.745213i \(-0.267652\pi\)
0.666827 + 0.745213i \(0.267652\pi\)
\(104\) −14.8789 + 25.7709i −1.45899 + 2.52705i
\(105\) 0 0
\(106\) −9.62050 16.6632i −0.934426 1.61847i
\(107\) −4.06934 7.04830i −0.393398 0.681385i 0.599498 0.800377i \(-0.295367\pi\)
−0.992895 + 0.118992i \(0.962034\pi\)
\(108\) 0 0
\(109\) 2.74398 4.75272i 0.262826 0.455228i −0.704166 0.710036i \(-0.748679\pi\)
0.966992 + 0.254808i \(0.0820122\pi\)
\(110\) 8.73222 15.1246i 0.832584 1.44208i
\(111\) 0 0
\(112\) 21.2226 8.55845i 2.00535 0.808697i
\(113\) 3.12754 5.41706i 0.294214 0.509594i −0.680587 0.732667i \(-0.738275\pi\)
0.974802 + 0.223073i \(0.0716087\pi\)
\(114\) 0 0
\(115\) −14.0463 −1.30982
\(116\) 5.49342 9.51487i 0.510051 0.883434i
\(117\) 0 0
\(118\) −11.9629 −1.10127
\(119\) −3.75039 + 1.51242i −0.343797 + 0.138643i
\(120\) 0 0
\(121\) −2.26016 −0.205469
\(122\) 9.22467 + 15.9776i 0.835162 + 1.44654i
\(123\) 0 0
\(124\) −14.6028 + 25.2929i −1.31137 + 2.27136i
\(125\) −10.9297 −0.977578
\(126\) 0 0
\(127\) −5.60019 −0.496936 −0.248468 0.968640i \(-0.579927\pi\)
−0.248468 + 0.968640i \(0.579927\pi\)
\(128\) 2.57894 4.46685i 0.227948 0.394818i
\(129\) 0 0
\(130\) −12.6079 21.8374i −1.10578 1.91527i
\(131\) 7.12474 0.622491 0.311246 0.950330i \(-0.399254\pi\)
0.311246 + 0.950330i \(0.399254\pi\)
\(132\) 0 0
\(133\) −2.73027 + 19.3356i −0.236744 + 1.67661i
\(134\) −8.60362 −0.743239
\(135\) 0 0
\(136\) 5.32780 9.22803i 0.456855 0.791297i
\(137\) 8.87821 0.758516 0.379258 0.925291i \(-0.376179\pi\)
0.379258 + 0.925291i \(0.376179\pi\)
\(138\) 0 0
\(139\) −4.18550 + 7.24949i −0.355009 + 0.614894i −0.987120 0.159985i \(-0.948856\pi\)
0.632110 + 0.774878i \(0.282189\pi\)
\(140\) −3.96498 + 28.0797i −0.335102 + 2.37317i
\(141\) 0 0
\(142\) −0.207302 + 0.359058i −0.0173964 + 0.0301315i
\(143\) 6.30943 10.9283i 0.527621 0.913867i
\(144\) 0 0
\(145\) 2.67178 + 4.62766i 0.221879 + 0.384306i
\(146\) 0.492450 + 0.852948i 0.0407555 + 0.0705905i
\(147\) 0 0
\(148\) −16.8436 + 29.1739i −1.38453 + 2.39808i
\(149\) −13.4522 −1.10205 −0.551025 0.834489i \(-0.685763\pi\)
−0.551025 + 0.834489i \(0.685763\pi\)
\(150\) 0 0
\(151\) −9.02147 −0.734157 −0.367078 0.930190i \(-0.619642\pi\)
−0.367078 + 0.930190i \(0.619642\pi\)
\(152\) −25.7274 44.5612i −2.08677 3.61439i
\(153\) 0 0
\(154\) −18.7689 + 7.56893i −1.51244 + 0.609922i
\(155\) −7.10224 12.3014i −0.570466 0.988075i
\(156\) 0 0
\(157\) −1.46420 2.53607i −0.116856 0.202400i 0.801664 0.597775i \(-0.203948\pi\)
−0.918520 + 0.395374i \(0.870615\pi\)
\(158\) 10.2908 + 17.8241i 0.818689 + 1.41801i
\(159\) 0 0
\(160\) −9.62966 16.6791i −0.761292 1.31860i
\(161\) 12.8197 + 10.0293i 1.01033 + 0.790418i
\(162\) 0 0
\(163\) 0.602369 + 1.04333i 0.0471812 + 0.0817202i 0.888652 0.458583i \(-0.151643\pi\)
−0.841470 + 0.540303i \(0.818310\pi\)
\(164\) −37.0473 −2.89290
\(165\) 0 0
\(166\) 11.1205 0.863118
\(167\) −7.18464 + 12.4442i −0.555964 + 0.962958i 0.441864 + 0.897082i \(0.354318\pi\)
−0.997828 + 0.0658761i \(0.979016\pi\)
\(168\) 0 0
\(169\) −2.60977 4.52025i −0.200751 0.347711i
\(170\) 4.51460 + 7.81953i 0.346254 + 0.599730i
\(171\) 0 0
\(172\) −1.95788 + 3.39115i −0.149287 + 0.258573i
\(173\) −2.72184 + 4.71436i −0.206938 + 0.358426i −0.950748 0.309964i \(-0.899683\pi\)
0.743811 + 0.668390i \(0.233016\pi\)
\(174\) 0 0
\(175\) −0.443889 0.347269i −0.0335548 0.0262511i
\(176\) 12.7848 22.1438i 0.963687 1.66915i
\(177\) 0 0
\(178\) −15.6706 −1.17456
\(179\) −3.02828 + 5.24514i −0.226345 + 0.392040i −0.956722 0.291004i \(-0.906011\pi\)
0.730377 + 0.683044i \(0.239344\pi\)
\(180\) 0 0
\(181\) 12.7416 0.947076 0.473538 0.880773i \(-0.342977\pi\)
0.473538 + 0.880773i \(0.342977\pi\)
\(182\) −4.08542 + 28.9327i −0.302831 + 2.14463i
\(183\) 0 0
\(184\) −42.8893 −3.16184
\(185\) −8.19204 14.1890i −0.602291 1.04320i
\(186\) 0 0
\(187\) −2.25927 + 3.91318i −0.165215 + 0.286160i
\(188\) 27.3520 1.99485
\(189\) 0 0
\(190\) 43.6011 3.16316
\(191\) 12.0662 20.8993i 0.873079 1.51222i 0.0142836 0.999898i \(-0.495453\pi\)
0.858795 0.512319i \(-0.171213\pi\)
\(192\) 0 0
\(193\) 0.394373 + 0.683075i 0.0283876 + 0.0491688i 0.879870 0.475214i \(-0.157629\pi\)
−0.851483 + 0.524383i \(0.824296\pi\)
\(194\) −3.42073 −0.245594
\(195\) 0 0
\(196\) 23.6681 22.7966i 1.69058 1.62833i
\(197\) 14.8985 1.06147 0.530736 0.847537i \(-0.321915\pi\)
0.530736 + 0.847537i \(0.321915\pi\)
\(198\) 0 0
\(199\) −1.36578 + 2.36561i −0.0968178 + 0.167693i −0.910366 0.413804i \(-0.864200\pi\)
0.813548 + 0.581498i \(0.197533\pi\)
\(200\) 1.48506 0.105010
\(201\) 0 0
\(202\) 23.4959 40.6961i 1.65317 2.86337i
\(203\) 0.865757 6.13124i 0.0607642 0.430328i
\(204\) 0 0
\(205\) 9.00916 15.6043i 0.629227 1.08985i
\(206\) −17.5101 + 30.3285i −1.21999 + 2.11308i
\(207\) 0 0
\(208\) −18.4590 31.9720i −1.27990 2.21686i
\(209\) 10.9098 + 18.8963i 0.754647 + 1.30709i
\(210\) 0 0
\(211\) 4.58796 7.94658i 0.315848 0.547065i −0.663769 0.747937i \(-0.731044\pi\)
0.979617 + 0.200872i \(0.0643776\pi\)
\(212\) 34.9105 2.39766
\(213\) 0 0
\(214\) 21.0577 1.43948
\(215\) −0.952236 1.64932i −0.0649419 0.112483i
\(216\) 0 0
\(217\) −2.30139 + 16.2983i −0.156229 + 1.10640i
\(218\) 7.09969 + 12.2970i 0.480852 + 0.832860i
\(219\) 0 0
\(220\) 15.8436 + 27.4418i 1.06817 + 1.85013i
\(221\) 3.26201 + 5.64997i 0.219427 + 0.380058i
\(222\) 0 0
\(223\) 14.1714 + 24.5455i 0.948985 + 1.64369i 0.747569 + 0.664184i \(0.231221\pi\)
0.201415 + 0.979506i \(0.435446\pi\)
\(224\) −3.12037 + 22.0983i −0.208489 + 1.47650i
\(225\) 0 0
\(226\) 8.09210 + 14.0159i 0.538278 + 0.932326i
\(227\) −2.07197 −0.137522 −0.0687608 0.997633i \(-0.521905\pi\)
−0.0687608 + 0.997633i \(0.521905\pi\)
\(228\) 0 0
\(229\) −15.6854 −1.03652 −0.518259 0.855224i \(-0.673420\pi\)
−0.518259 + 0.855224i \(0.673420\pi\)
\(230\) 18.1715 31.4739i 1.19819 2.07533i
\(231\) 0 0
\(232\) 8.15806 + 14.1302i 0.535603 + 0.927692i
\(233\) 14.6262 + 25.3334i 0.958196 + 1.65964i 0.726879 + 0.686766i \(0.240970\pi\)
0.231317 + 0.972878i \(0.425696\pi\)
\(234\) 0 0
\(235\) −6.65147 + 11.5207i −0.433894 + 0.751526i
\(236\) 10.8526 18.7973i 0.706446 1.22360i
\(237\) 0 0
\(238\) 1.46290 10.3602i 0.0948259 0.671551i
\(239\) −8.86060 + 15.3470i −0.573144 + 0.992715i 0.423096 + 0.906085i \(0.360943\pi\)
−0.996241 + 0.0866304i \(0.972390\pi\)
\(240\) 0 0
\(241\) −26.4073 −1.70104 −0.850520 0.525942i \(-0.823713\pi\)
−0.850520 + 0.525942i \(0.823713\pi\)
\(242\) 2.92393 5.06439i 0.187957 0.325551i
\(243\) 0 0
\(244\) −33.4741 −2.14296
\(245\) 3.84632 + 15.5127i 0.245732 + 0.991070i
\(246\) 0 0
\(247\) 31.5039 2.00454
\(248\) −21.6861 37.5615i −1.37707 2.38515i
\(249\) 0 0
\(250\) 14.1395 24.4904i 0.894261 1.54891i
\(251\) −8.81798 −0.556586 −0.278293 0.960496i \(-0.589769\pi\)
−0.278293 + 0.960496i \(0.589769\pi\)
\(252\) 0 0
\(253\) 18.1873 1.14343
\(254\) 7.24487 12.5485i 0.454584 0.787362i
\(255\) 0 0
\(256\) 11.1995 + 19.3981i 0.699968 + 1.21238i
\(257\) −9.19671 −0.573675 −0.286837 0.957979i \(-0.592604\pi\)
−0.286837 + 0.957979i \(0.592604\pi\)
\(258\) 0 0
\(259\) −2.65453 + 18.7992i −0.164944 + 1.16813i
\(260\) 45.7509 2.83735
\(261\) 0 0
\(262\) −9.21716 + 15.9646i −0.569438 + 0.986295i
\(263\) 0.254605 0.0156996 0.00784982 0.999969i \(-0.497501\pi\)
0.00784982 + 0.999969i \(0.497501\pi\)
\(264\) 0 0
\(265\) −8.48954 + 14.7043i −0.521508 + 0.903279i
\(266\) −39.7936 31.1319i −2.43990 1.90882i
\(267\) 0 0
\(268\) 7.80512 13.5189i 0.476773 0.825796i
\(269\) 0.489721 0.848222i 0.0298588 0.0517170i −0.850710 0.525636i \(-0.823828\pi\)
0.880569 + 0.473919i \(0.157161\pi\)
\(270\) 0 0
\(271\) −7.02445 12.1667i −0.426705 0.739075i 0.569873 0.821733i \(-0.306992\pi\)
−0.996578 + 0.0826580i \(0.973659\pi\)
\(272\) 6.60979 + 11.4485i 0.400777 + 0.694167i
\(273\) 0 0
\(274\) −11.4856 + 19.8936i −0.693870 + 1.20182i
\(275\) −0.629746 −0.0379751
\(276\) 0 0
\(277\) 25.4187 1.52726 0.763630 0.645654i \(-0.223415\pi\)
0.763630 + 0.645654i \(0.223415\pi\)
\(278\) −10.8294 18.7571i −0.649505 1.12498i
\(279\) 0 0
\(280\) −33.1693 25.9494i −1.98224 1.55078i
\(281\) −14.6906 25.4448i −0.876366 1.51791i −0.855300 0.518132i \(-0.826627\pi\)
−0.0210657 0.999778i \(-0.506706\pi\)
\(282\) 0 0
\(283\) 1.53844 + 2.66466i 0.0914510 + 0.158398i 0.908122 0.418706i \(-0.137516\pi\)
−0.816671 + 0.577104i \(0.804183\pi\)
\(284\) −0.376125 0.651467i −0.0223189 0.0386575i
\(285\) 0 0
\(286\) 16.3248 + 28.2754i 0.965307 + 1.67196i
\(287\) −19.3642 + 7.80898i −1.14303 + 0.460949i
\(288\) 0 0
\(289\) 7.33194 + 12.6993i 0.431291 + 0.747017i
\(290\) −13.8257 −0.811876
\(291\) 0 0
\(292\) −1.78698 −0.104575
\(293\) −8.50817 + 14.7366i −0.497053 + 0.860921i −0.999994 0.00339988i \(-0.998918\pi\)
0.502941 + 0.864320i \(0.332251\pi\)
\(294\) 0 0
\(295\) 5.27829 + 9.14226i 0.307314 + 0.532283i
\(296\) −25.0137 43.3251i −1.45389 2.51822i
\(297\) 0 0
\(298\) 17.4029 30.1428i 1.00812 1.74612i
\(299\) 13.1297 22.7414i 0.759313 1.31517i
\(300\) 0 0
\(301\) −0.308560 + 2.18520i −0.0177851 + 0.125953i
\(302\) 11.6709 20.2146i 0.671586 1.16322i
\(303\) 0 0
\(304\) 63.8360 3.66124
\(305\) 8.14024 14.0993i 0.466109 0.807324i
\(306\) 0 0
\(307\) 24.2396 1.38343 0.691714 0.722172i \(-0.256856\pi\)
0.691714 + 0.722172i \(0.256856\pi\)
\(308\) 5.13391 36.3580i 0.292532 2.07169i
\(309\) 0 0
\(310\) 36.7522 2.08738
\(311\) 10.9807 + 19.0192i 0.622661 + 1.07848i 0.988988 + 0.147994i \(0.0472816\pi\)
−0.366328 + 0.930486i \(0.619385\pi\)
\(312\) 0 0
\(313\) 1.24073 2.14900i 0.0701300 0.121469i −0.828828 0.559503i \(-0.810992\pi\)
0.898958 + 0.438035i \(0.144325\pi\)
\(314\) 7.57685 0.427586
\(315\) 0 0
\(316\) −37.3427 −2.10069
\(317\) 9.73961 16.8695i 0.547031 0.947486i −0.451445 0.892299i \(-0.649091\pi\)
0.998476 0.0551868i \(-0.0175754\pi\)
\(318\) 0 0
\(319\) −3.45946 5.99195i −0.193692 0.335485i
\(320\) 10.3357 0.577781
\(321\) 0 0
\(322\) −39.0575 + 15.7507i −2.17659 + 0.877752i
\(323\) −11.2809 −0.627684
\(324\) 0 0
\(325\) −0.454624 + 0.787432i −0.0252180 + 0.0436789i
\(326\) −3.11710 −0.172640
\(327\) 0 0
\(328\) 27.5087 47.6465i 1.51892 2.63084i
\(329\) 14.2966 5.76537i 0.788195 0.317855i
\(330\) 0 0
\(331\) −1.28856 + 2.23185i −0.0708256 + 0.122674i −0.899263 0.437408i \(-0.855897\pi\)
0.828438 + 0.560081i \(0.189230\pi\)
\(332\) −10.0884 + 17.4736i −0.553673 + 0.958990i
\(333\) 0 0
\(334\) −18.5893 32.1976i −1.01716 1.76178i
\(335\) 3.79610 + 6.57504i 0.207403 + 0.359233i
\(336\) 0 0
\(337\) 12.0760 20.9163i 0.657822 1.13938i −0.323356 0.946277i \(-0.604811\pi\)
0.981178 0.193104i \(-0.0618554\pi\)
\(338\) 13.5048 0.734567
\(339\) 0 0
\(340\) −16.3824 −0.888462
\(341\) 9.19608 + 15.9281i 0.497996 + 0.862554i
\(342\) 0 0
\(343\) 7.56588 16.9044i 0.408519 0.912750i
\(344\) −2.90758 5.03607i −0.156766 0.271527i
\(345\) 0 0
\(346\) −7.04240 12.1978i −0.378602 0.655757i
\(347\) −18.1212 31.3868i −0.972797 1.68493i −0.687022 0.726637i \(-0.741082\pi\)
−0.285775 0.958297i \(-0.592251\pi\)
\(348\) 0 0
\(349\) −17.6469 30.5653i −0.944617 1.63613i −0.756515 0.653976i \(-0.773100\pi\)
−0.188102 0.982149i \(-0.560234\pi\)
\(350\) 1.35239 0.545376i 0.0722881 0.0291516i
\(351\) 0 0
\(352\) 12.4686 + 21.5963i 0.664579 + 1.15109i
\(353\) −2.92219 −0.155532 −0.0777662 0.996972i \(-0.524779\pi\)
−0.0777662 + 0.996972i \(0.524779\pi\)
\(354\) 0 0
\(355\) 0.365864 0.0194181
\(356\) 14.2162 24.6231i 0.753456 1.30502i
\(357\) 0 0
\(358\) −7.83528 13.5711i −0.414107 0.717255i
\(359\) −0.196714 0.340719i −0.0103822 0.0179825i 0.860788 0.508964i \(-0.169971\pi\)
−0.871170 + 0.490982i \(0.836638\pi\)
\(360\) 0 0
\(361\) −17.7371 + 30.7215i −0.933529 + 1.61692i
\(362\) −16.4836 + 28.5504i −0.866359 + 1.50058i
\(363\) 0 0
\(364\) −41.7556 32.6669i −2.18859 1.71221i
\(365\) 0.434559 0.752678i 0.0227459 0.0393970i
\(366\) 0 0
\(367\) −9.23134 −0.481872 −0.240936 0.970541i \(-0.577454\pi\)
−0.240936 + 0.970541i \(0.577454\pi\)
\(368\) 26.6047 46.0807i 1.38686 2.40212i
\(369\) 0 0
\(370\) 42.3916 2.20384
\(371\) 18.2473 7.35858i 0.947353 0.382039i
\(372\) 0 0
\(373\) −21.5244 −1.11449 −0.557245 0.830348i \(-0.688142\pi\)
−0.557245 + 0.830348i \(0.688142\pi\)
\(374\) −5.84557 10.1248i −0.302267 0.523542i
\(375\) 0 0
\(376\) −20.3097 + 35.1775i −1.04739 + 1.81414i
\(377\) −9.98975 −0.514498
\(378\) 0 0
\(379\) −18.2445 −0.937159 −0.468579 0.883421i \(-0.655234\pi\)
−0.468579 + 0.883421i \(0.655234\pi\)
\(380\) −39.5545 + 68.5104i −2.02910 + 3.51451i
\(381\) 0 0
\(382\) 31.2197 + 54.0740i 1.59734 + 2.76667i
\(383\) 6.25965 0.319853 0.159926 0.987129i \(-0.448874\pi\)
0.159926 + 0.987129i \(0.448874\pi\)
\(384\) 0 0
\(385\) 14.0655 + 11.0040i 0.716847 + 0.560813i
\(386\) −2.04078 −0.103873
\(387\) 0 0
\(388\) 3.10325 5.37499i 0.157544 0.272874i
\(389\) −22.6208 −1.14692 −0.573460 0.819234i \(-0.694399\pi\)
−0.573460 + 0.819234i \(0.694399\pi\)
\(390\) 0 0
\(391\) −4.70148 + 8.14320i −0.237764 + 0.411820i
\(392\) 11.7444 + 47.3668i 0.593183 + 2.39238i
\(393\) 0 0
\(394\) −19.2739 + 33.3834i −0.971006 + 1.68183i
\(395\) 9.08101 15.7288i 0.456915 0.791400i
\(396\) 0 0
\(397\) 10.6077 + 18.3730i 0.532384 + 0.922115i 0.999285 + 0.0378060i \(0.0120369\pi\)
−0.466902 + 0.884309i \(0.654630\pi\)
\(398\) −3.53378 6.12069i −0.177132 0.306802i
\(399\) 0 0
\(400\) −0.921200 + 1.59557i −0.0460600 + 0.0797783i
\(401\) 4.27442 0.213454 0.106727 0.994288i \(-0.465963\pi\)
0.106727 + 0.994288i \(0.465963\pi\)
\(402\) 0 0
\(403\) 26.5552 1.32281
\(404\) 42.6305 + 73.8382i 2.12095 + 3.67359i
\(405\) 0 0
\(406\) 12.6184 + 9.87180i 0.626241 + 0.489929i
\(407\) 10.6072 + 18.3721i 0.525778 + 0.910674i
\(408\) 0 0
\(409\) −17.6627 30.5926i −0.873363 1.51271i −0.858497 0.512819i \(-0.828601\pi\)
−0.0148660 0.999889i \(-0.504732\pi\)
\(410\) 23.3100 + 40.3741i 1.15120 + 1.99394i
\(411\) 0 0
\(412\) −31.7701 55.0274i −1.56520 2.71100i
\(413\) 1.71036 12.1127i 0.0841615 0.596026i
\(414\) 0 0
\(415\) −4.90660 8.49849i −0.240856 0.417174i
\(416\) 36.0052 1.76530
\(417\) 0 0
\(418\) −56.4553 −2.76132
\(419\) 1.87450 3.24673i 0.0915755 0.158613i −0.816599 0.577206i \(-0.804143\pi\)
0.908174 + 0.418592i \(0.137476\pi\)
\(420\) 0 0
\(421\) −12.2663 21.2459i −0.597825 1.03546i −0.993142 0.116918i \(-0.962699\pi\)
0.395317 0.918545i \(-0.370635\pi\)
\(422\) 11.8707 + 20.5607i 0.577858 + 1.00088i
\(423\) 0 0
\(424\) −25.9221 + 44.8984i −1.25889 + 2.18046i
\(425\) 0.162791 0.281963i 0.00789653 0.0136772i
\(426\) 0 0
\(427\) −17.4965 + 7.05581i −0.846716 + 0.341455i
\(428\) −19.1034 + 33.0880i −0.923396 + 1.59937i
\(429\) 0 0
\(430\) 4.92757 0.237628
\(431\) 12.1284 21.0071i 0.584206 1.01187i −0.410768 0.911740i \(-0.634739\pi\)
0.994974 0.100135i \(-0.0319273\pi\)
\(432\) 0 0
\(433\) 8.60056 0.413317 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(434\) −33.5428 26.2417i −1.61011 1.25964i
\(435\) 0 0
\(436\) −25.7631 −1.23383
\(437\) 22.7030 + 39.3227i 1.08603 + 1.88106i
\(438\) 0 0
\(439\) −13.2792 + 23.0002i −0.633780 + 1.09774i 0.352992 + 0.935626i \(0.385164\pi\)
−0.986772 + 0.162113i \(0.948169\pi\)
\(440\) −47.0573 −2.24337
\(441\) 0 0
\(442\) −16.8801 −0.802902
\(443\) −13.8041 + 23.9094i −0.655853 + 1.13597i 0.325826 + 0.945430i \(0.394358\pi\)
−0.981679 + 0.190542i \(0.938976\pi\)
\(444\) 0 0
\(445\) 6.91419 + 11.9757i 0.327764 + 0.567704i
\(446\) −73.3330 −3.47242
\(447\) 0 0
\(448\) −9.43309 7.37983i −0.445672 0.348664i
\(449\) 15.6315 0.737695 0.368847 0.929490i \(-0.379753\pi\)
0.368847 + 0.929490i \(0.379753\pi\)
\(450\) 0 0
\(451\) −11.6652 + 20.2047i −0.549292 + 0.951402i
\(452\) −29.3643 −1.38118
\(453\) 0 0
\(454\) 2.68047 4.64272i 0.125801 0.217894i
\(455\) 23.9134 9.64356i 1.12108 0.452097i
\(456\) 0 0
\(457\) 16.4677 28.5230i 0.770328 1.33425i −0.167055 0.985948i \(-0.553426\pi\)
0.937383 0.348300i \(-0.113241\pi\)
\(458\) 20.2919 35.1466i 0.948178 1.64229i
\(459\) 0 0
\(460\) 32.9700 + 57.1057i 1.53723 + 2.66256i
\(461\) 17.4591 + 30.2400i 0.813149 + 1.40842i 0.910649 + 0.413180i \(0.135582\pi\)
−0.0974999 + 0.995236i \(0.531085\pi\)
\(462\) 0 0
\(463\) −1.55128 + 2.68689i −0.0720940 + 0.124871i −0.899819 0.436264i \(-0.856302\pi\)
0.827725 + 0.561134i \(0.189635\pi\)
\(464\) −20.2421 −0.939718
\(465\) 0 0
\(466\) −75.6868 −3.50613
\(467\) −5.26376 9.11710i −0.243578 0.421889i 0.718153 0.695885i \(-0.244988\pi\)
−0.961731 + 0.273996i \(0.911654\pi\)
\(468\) 0 0
\(469\) 1.23008 8.71134i 0.0567998 0.402252i
\(470\) −17.2098 29.8082i −0.793828 1.37495i
\(471\) 0 0
\(472\) 16.1168 + 27.9152i 0.741837 + 1.28490i
\(473\) 1.23297 + 2.13556i 0.0566919 + 0.0981933i
\(474\) 0 0
\(475\) −0.786102 1.36157i −0.0360688 0.0624730i
\(476\) 14.9518 + 11.6973i 0.685315 + 0.536145i
\(477\) 0 0
\(478\) −22.9256 39.7083i −1.04859 1.81622i
\(479\) 16.9781 0.775748 0.387874 0.921712i \(-0.373210\pi\)
0.387874 + 0.921712i \(0.373210\pi\)
\(480\) 0 0
\(481\) 30.6299 1.39660
\(482\) 34.1626 59.1714i 1.55607 2.69518i
\(483\) 0 0
\(484\) 5.30512 + 9.18873i 0.241142 + 0.417669i
\(485\) 1.50930 + 2.61418i 0.0685337 + 0.118704i
\(486\) 0 0
\(487\) 6.60283 11.4364i 0.299203 0.518235i −0.676751 0.736212i \(-0.736613\pi\)
0.975954 + 0.217977i \(0.0699459\pi\)
\(488\) 24.8556 43.0511i 1.12516 1.94883i
\(489\) 0 0
\(490\) −39.7356 11.4500i −1.79507 0.517257i
\(491\) −7.89168 + 13.6688i −0.356147 + 0.616864i −0.987314 0.158783i \(-0.949243\pi\)
0.631167 + 0.775647i \(0.282576\pi\)
\(492\) 0 0
\(493\) 3.57712 0.161105
\(494\) −40.7560 + 70.5915i −1.83370 + 3.17606i
\(495\) 0 0
\(496\) 53.8085 2.41608
\(497\) −0.333915 0.261233i −0.0149781 0.0117179i
\(498\) 0 0
\(499\) 42.9459 1.92252 0.961261 0.275640i \(-0.0888897\pi\)
0.961261 + 0.275640i \(0.0888897\pi\)
\(500\) 25.6545 + 44.4348i 1.14730 + 1.98719i
\(501\) 0 0
\(502\) 11.4077 19.7587i 0.509149 0.881873i
\(503\) −37.7173 −1.68173 −0.840866 0.541243i \(-0.817954\pi\)
−0.840866 + 0.541243i \(0.817954\pi\)
\(504\) 0 0
\(505\) −41.4676 −1.84528
\(506\) −23.5287 + 40.7529i −1.04598 + 1.81169i
\(507\) 0 0
\(508\) 13.1450 + 22.7677i 0.583213 + 1.01015i
\(509\) 34.9928 1.55103 0.775513 0.631331i \(-0.217491\pi\)
0.775513 + 0.631331i \(0.217491\pi\)
\(510\) 0 0
\(511\) −0.934035 + 0.376668i −0.0413193 + 0.0166628i
\(512\) −47.6386 −2.10535
\(513\) 0 0
\(514\) 11.8976 20.6073i 0.524782 0.908949i
\(515\) 30.9034 1.36177
\(516\) 0 0
\(517\) 8.61241 14.9171i 0.378773 0.656055i
\(518\) −38.6897 30.2683i −1.69993 1.32991i
\(519\) 0 0
\(520\) −33.9715 + 58.8403i −1.48975 + 2.58032i
\(521\) 6.97005 12.0725i 0.305363 0.528905i −0.671979 0.740570i \(-0.734555\pi\)
0.977342 + 0.211665i \(0.0678887\pi\)
\(522\) 0 0
\(523\) −13.4103 23.2274i −0.586393 1.01566i −0.994700 0.102817i \(-0.967214\pi\)
0.408308 0.912844i \(-0.366119\pi\)
\(524\) −16.7234 28.9658i −0.730566 1.26538i
\(525\) 0 0
\(526\) −0.329379 + 0.570501i −0.0143616 + 0.0248750i
\(527\) −9.50885 −0.414212
\(528\) 0 0
\(529\) 14.8473 0.645535
\(530\) −21.9656 38.0455i −0.954123 1.65259i
\(531\) 0 0
\(532\) 85.0179 34.2851i 3.68599 1.48645i
\(533\) 16.8426 + 29.1722i 0.729533 + 1.26359i
\(534\) 0 0
\(535\) −9.29112 16.0927i −0.401690 0.695748i
\(536\) 11.5911 + 20.0763i 0.500658 + 0.867166i
\(537\) 0 0
\(538\) 1.26709 + 2.19466i 0.0546280 + 0.0946186i
\(539\) −4.98026 20.0860i −0.214515 0.865167i
\(540\) 0 0
\(541\) −11.6251 20.1353i −0.499802 0.865683i 0.500198 0.865911i \(-0.333261\pi\)
−1.00000 0.000228285i \(0.999927\pi\)
\(542\) 36.3497 1.56135
\(543\) 0 0
\(544\) −12.8927 −0.552770
\(545\) 6.26507 10.8514i 0.268366 0.464824i
\(546\) 0 0
\(547\) −7.87127 13.6334i −0.336551 0.582924i 0.647230 0.762294i \(-0.275927\pi\)
−0.983782 + 0.179371i \(0.942594\pi\)
\(548\) −20.8392 36.0946i −0.890208 1.54189i
\(549\) 0 0
\(550\) 0.814692 1.41109i 0.0347386 0.0601690i
\(551\) 8.63677 14.9593i 0.367939 0.637288i
\(552\) 0 0
\(553\) −19.5186 + 7.87126i −0.830015 + 0.334720i
\(554\) −32.8837 + 56.9563i −1.39710 + 2.41984i
\(555\) 0 0
\(556\) 39.2973 1.66658
\(557\) 2.06405 3.57504i 0.0874565 0.151479i −0.818979 0.573824i \(-0.805459\pi\)
0.906435 + 0.422345i \(0.138793\pi\)
\(558\) 0 0
\(559\) 3.56040 0.150589
\(560\) 48.4556 19.5407i 2.04762 0.825744i
\(561\) 0 0
\(562\) 76.0198 3.20670
\(563\) −0.342707 0.593585i −0.0144434 0.0250166i 0.858713 0.512456i \(-0.171264\pi\)
−0.873157 + 0.487440i \(0.837931\pi\)
\(564\) 0 0
\(565\) 7.14081 12.3683i 0.300416 0.520336i
\(566\) −7.96104 −0.334627
\(567\) 0 0
\(568\) 1.11714 0.0468740
\(569\) 9.25223 16.0253i 0.387874 0.671817i −0.604290 0.796765i \(-0.706543\pi\)
0.992163 + 0.124948i \(0.0398763\pi\)
\(570\) 0 0
\(571\) −17.2741 29.9197i −0.722901 1.25210i −0.959832 0.280574i \(-0.909475\pi\)
0.236932 0.971526i \(-0.423858\pi\)
\(572\) −59.2389 −2.47690
\(573\) 0 0
\(574\) 7.55332 53.4921i 0.315269 2.23272i
\(575\) −1.31048 −0.0546509
\(576\) 0 0
\(577\) −0.246628 + 0.427172i −0.0102673 + 0.0177834i −0.871113 0.491082i \(-0.836602\pi\)
0.860846 + 0.508865i \(0.169935\pi\)
\(578\) −37.9408 −1.57813
\(579\) 0 0
\(580\) 12.5426 21.7244i 0.520802 0.902056i
\(581\) −1.58992 + 11.2597i −0.0659612 + 0.467133i
\(582\) 0 0
\(583\) 10.9924 19.0394i 0.455258 0.788529i
\(584\) 1.32689 2.29824i 0.0549071 0.0951019i
\(585\) 0 0
\(586\) −22.0138 38.1290i −0.909380 1.57509i
\(587\) −18.8206 32.5983i −0.776810 1.34547i −0.933771 0.357870i \(-0.883503\pi\)
0.156961 0.987605i \(-0.449830\pi\)
\(588\) 0 0
\(589\) −22.9586 + 39.7655i −0.945994 + 1.63851i
\(590\) −27.3137 −1.12449
\(591\) 0 0
\(592\) 62.0652 2.55086
\(593\) 12.5475 + 21.7328i 0.515262 + 0.892460i 0.999843 + 0.0177137i \(0.00563874\pi\)
−0.484581 + 0.874746i \(0.661028\pi\)
\(594\) 0 0
\(595\) −8.56290 + 3.45316i −0.351044 + 0.141566i
\(596\) 31.5755 + 54.6904i 1.29338 + 2.24021i
\(597\) 0 0
\(598\) 33.9715 + 58.8403i 1.38920 + 2.40616i
\(599\) −0.269218 0.466300i −0.0110000 0.0190525i 0.860473 0.509496i \(-0.170168\pi\)
−0.871473 + 0.490444i \(0.836835\pi\)
\(600\) 0 0
\(601\) 18.0520 + 31.2670i 0.736357 + 1.27541i 0.954125 + 0.299408i \(0.0967890\pi\)
−0.217768 + 0.976001i \(0.569878\pi\)
\(602\) −4.49726 3.51836i −0.183295 0.143398i
\(603\) 0 0
\(604\) 21.1755 + 36.6770i 0.861619 + 1.49237i
\(605\) −5.16040 −0.209800
\(606\) 0 0
\(607\) −22.3536 −0.907305 −0.453652 0.891179i \(-0.649879\pi\)
−0.453652 + 0.891179i \(0.649879\pi\)
\(608\) −31.1287 + 53.9166i −1.26244 + 2.18660i
\(609\) 0 0
\(610\) 21.0618 + 36.4801i 0.852767 + 1.47704i
\(611\) −12.4349 21.5378i −0.503061 0.871328i
\(612\) 0 0
\(613\) 12.2687 21.2500i 0.495529 0.858281i −0.504458 0.863436i \(-0.668308\pi\)
0.999987 + 0.00515549i \(0.00164105\pi\)
\(614\) −31.3584 + 54.3143i −1.26552 + 2.19195i
\(615\) 0 0
\(616\) 42.9480 + 33.5997i 1.73042 + 1.35377i
\(617\) 15.0763 26.1130i 0.606950 1.05127i −0.384790 0.923004i \(-0.625726\pi\)
0.991740 0.128264i \(-0.0409405\pi\)
\(618\) 0 0
\(619\) 23.6094 0.948942 0.474471 0.880271i \(-0.342639\pi\)
0.474471 + 0.880271i \(0.342639\pi\)
\(620\) −33.3412 + 57.7487i −1.33902 + 2.31924i
\(621\) 0 0
\(622\) −56.8224 −2.27837
\(623\) 2.24046 15.8668i 0.0897620 0.635689i
\(624\) 0 0
\(625\) −26.0197 −1.04079
\(626\) 3.21021 + 5.56025i 0.128306 + 0.222232i
\(627\) 0 0
\(628\) −6.87364 + 11.9055i −0.274288 + 0.475081i
\(629\) −10.9679 −0.437320
\(630\) 0 0
\(631\) −7.41460 −0.295171 −0.147585 0.989049i \(-0.547150\pi\)
−0.147585 + 0.989049i \(0.547150\pi\)
\(632\) 27.7281 48.0265i 1.10297 1.91039i
\(633\) 0 0
\(634\) 25.2000 + 43.6476i 1.00082 + 1.73347i
\(635\) −12.7864 −0.507412
\(636\) 0 0
\(637\) −28.7108 8.27315i −1.13756 0.327794i
\(638\) 17.9018 0.708738
\(639\) 0 0
\(640\) 5.88824 10.1987i 0.232753 0.403140i
\(641\) −18.6918 −0.738280 −0.369140 0.929374i \(-0.620348\pi\)
−0.369140 + 0.929374i \(0.620348\pi\)
\(642\) 0 0
\(643\) −18.2102 + 31.5410i −0.718141 + 1.24386i 0.243594 + 0.969877i \(0.421673\pi\)
−0.961735 + 0.273980i \(0.911660\pi\)
\(644\) 10.6835 75.6599i 0.420989 2.98142i
\(645\) 0 0
\(646\) 14.5939 25.2773i 0.574188 0.994522i
\(647\) 8.33593 14.4383i 0.327719 0.567626i −0.654340 0.756201i \(-0.727053\pi\)
0.982059 + 0.188574i \(0.0603867\pi\)
\(648\) 0 0
\(649\) −6.83440 11.8375i −0.268274 0.464664i
\(650\) −1.17628 2.03737i −0.0461375 0.0799124i
\(651\) 0 0
\(652\) 2.82780 4.89790i 0.110745 0.191817i
\(653\) −8.61070 −0.336963 −0.168481 0.985705i \(-0.553886\pi\)
−0.168481 + 0.985705i \(0.553886\pi\)
\(654\) 0 0
\(655\) 16.2672 0.635613
\(656\) 34.1280 + 59.1113i 1.33247 + 2.30791i
\(657\) 0 0
\(658\) −5.57662 + 39.4933i −0.217399 + 1.53961i
\(659\) −7.34515 12.7222i −0.286126 0.495586i 0.686755 0.726889i \(-0.259034\pi\)
−0.972882 + 0.231303i \(0.925701\pi\)
\(660\) 0 0
\(661\) −4.06201 7.03561i −0.157994 0.273654i 0.776151 0.630547i \(-0.217169\pi\)
−0.934145 + 0.356893i \(0.883836\pi\)
\(662\) −3.33397 5.77461i −0.129579 0.224437i
\(663\) 0 0
\(664\) −14.9819 25.9494i −0.581411 1.00703i
\(665\) −6.23375 + 44.1470i −0.241735 + 1.71195i
\(666\) 0 0
\(667\) −7.19902 12.4691i −0.278747 0.482805i
\(668\) 67.4561 2.60996
\(669\) 0 0
\(670\) −19.6438 −0.758906
\(671\) −10.5401 + 18.2560i −0.406896 + 0.704764i
\(672\) 0 0
\(673\) 6.57582 + 11.3897i 0.253479 + 0.439039i 0.964481 0.264151i \(-0.0850917\pi\)
−0.711002 + 0.703190i \(0.751758\pi\)
\(674\) 31.2451 + 54.1180i 1.20351 + 2.08455i
\(675\) 0 0
\(676\) −12.2515 + 21.2202i −0.471210 + 0.816160i
\(677\) −5.40967 + 9.36982i −0.207910 + 0.360111i −0.951056 0.309018i \(-0.900000\pi\)
0.743146 + 0.669130i \(0.233333\pi\)
\(678\) 0 0
\(679\) 0.489070 3.46356i 0.0187688 0.132919i
\(680\) 12.1645 21.0695i 0.466486 0.807977i
\(681\) 0 0
\(682\) −47.5873 −1.82221
\(683\) −0.684640 + 1.18583i −0.0261970 + 0.0453746i −0.878827 0.477141i \(-0.841673\pi\)
0.852630 + 0.522516i \(0.175006\pi\)
\(684\) 0 0
\(685\) 20.2708 0.774506
\(686\) 28.0902 + 38.8219i 1.07249 + 1.48223i
\(687\) 0 0
\(688\) 7.21440 0.275047
\(689\) −15.8711 27.4896i −0.604642 1.04727i
\(690\) 0 0
\(691\) 17.9215 31.0409i 0.681765 1.18085i −0.292677 0.956211i \(-0.594546\pi\)
0.974442 0.224640i \(-0.0721207\pi\)
\(692\) 25.5552 0.971462
\(693\) 0 0
\(694\) 93.7724 3.55955
\(695\) −9.55634 + 16.5521i −0.362493 + 0.627855i
\(696\) 0 0
\(697\) −6.03097 10.4459i −0.228439 0.395668i
\(698\) 91.3181 3.45644
\(699\) 0 0
\(700\) −0.369922 + 2.61976i −0.0139817 + 0.0990177i
\(701\) 29.6235 1.11886 0.559431 0.828877i \(-0.311020\pi\)
0.559431 + 0.828877i \(0.311020\pi\)
\(702\) 0 0
\(703\) −26.4815 + 45.8673i −0.998769 + 1.72992i
\(704\) −13.3828 −0.504382
\(705\) 0 0
\(706\) 3.78039 6.54782i 0.142277 0.246431i
\(707\) 37.8464 + 29.6085i 1.42336 + 1.11354i
\(708\) 0 0
\(709\) 7.63863 13.2305i 0.286875 0.496882i −0.686187 0.727425i \(-0.740717\pi\)
0.973062 + 0.230543i \(0.0740503\pi\)
\(710\) −0.473313 + 0.819802i −0.0177631 + 0.0307666i
\(711\) 0 0
\(712\) 21.1119 + 36.5669i 0.791202 + 1.37040i
\(713\) 19.1368 + 33.1458i 0.716677 + 1.24132i
\(714\) 0 0
\(715\) 14.4057 24.9514i 0.538743 0.933131i
\(716\) 28.4324 1.06257
\(717\) 0 0
\(718\) 1.01794 0.0379893
\(719\) −1.00538 1.74138i −0.0374945 0.0649424i 0.846669 0.532120i \(-0.178604\pi\)
−0.884164 + 0.467177i \(0.845271\pi\)
\(720\) 0 0
\(721\) −28.2047 22.0655i −1.05040 0.821763i
\(722\) −45.8923 79.4877i −1.70793 2.95823i
\(723\) 0 0
\(724\) −29.9075 51.8014i −1.11150 1.92518i
\(725\) 0.249270 + 0.431748i 0.00925765 + 0.0160347i
\(726\) 0 0
\(727\) −10.2515 17.7561i −0.380206 0.658535i 0.610886 0.791719i \(-0.290813\pi\)
−0.991091 + 0.133183i \(0.957480\pi\)
\(728\) 73.0178 29.4458i 2.70622 1.09134i
\(729\) 0 0
\(730\) 1.12436 + 1.94745i 0.0416146 + 0.0720785i
\(731\) −1.27490 −0.0471540
\(732\) 0 0
\(733\) 4.62855 0.170959 0.0854797 0.996340i \(-0.472758\pi\)
0.0854797 + 0.996340i \(0.472758\pi\)
\(734\) 11.9424 20.6849i 0.440803 0.763493i
\(735\) 0 0
\(736\) 25.9468 + 44.9412i 0.956412 + 1.65655i
\(737\) −4.91524 8.51345i −0.181055 0.313597i
\(738\) 0 0
\(739\) 11.6640 20.2026i 0.429066 0.743164i −0.567725 0.823219i \(-0.692176\pi\)
0.996790 + 0.0800546i \(0.0255095\pi\)
\(740\) −38.4573 + 66.6099i −1.41372 + 2.44863i
\(741\) 0 0
\(742\) −7.11767 + 50.4069i −0.261298 + 1.85049i
\(743\) 26.1283 45.2555i 0.958553 1.66026i 0.232535 0.972588i \(-0.425298\pi\)
0.726018 0.687675i \(-0.241369\pi\)
\(744\) 0 0
\(745\) −30.7142 −1.12528
\(746\) 27.8458 48.2303i 1.01951 1.76584i
\(747\) 0 0
\(748\) 21.2122 0.775594
\(749\) −3.01067 + 21.3214i −0.110008 + 0.779067i
\(750\) 0 0
\(751\) −6.18756 −0.225787 −0.112894 0.993607i \(-0.536012\pi\)
−0.112894 + 0.993607i \(0.536012\pi\)
\(752\) −25.1967 43.6419i −0.918829 1.59146i
\(753\) 0 0
\(754\) 12.9236 22.3843i 0.470649 0.815188i
\(755\) −20.5979 −0.749633
\(756\) 0 0
\(757\) 20.9175 0.760260 0.380130 0.924933i \(-0.375879\pi\)
0.380130 + 0.924933i \(0.375879\pi\)
\(758\) 23.6026 40.8810i 0.857287 1.48486i
\(759\) 0 0
\(760\) −58.7409 101.742i −2.13076 3.69058i
\(761\) 33.9143 1.22939 0.614696 0.788764i \(-0.289279\pi\)
0.614696 + 0.788764i \(0.289279\pi\)
\(762\) 0 0
\(763\) −13.4661 + 5.43045i −0.487504 + 0.196595i
\(764\) −113.289 −4.09864
\(765\) 0 0
\(766\) −8.09800 + 14.0261i −0.292593 + 0.506785i
\(767\) −19.7355 −0.712606
\(768\) 0 0
\(769\) 4.25392 7.36800i 0.153400 0.265697i −0.779075 0.626931i \(-0.784311\pi\)
0.932475 + 0.361234i \(0.117644\pi\)
\(770\) −42.8532 + 17.2814i −1.54432 + 0.622778i
\(771\) 0 0
\(772\) 1.85137 3.20667i 0.0666324 0.115411i
\(773\) −22.7870 + 39.4682i −0.819590 + 1.41957i 0.0863952 + 0.996261i \(0.472465\pi\)
−0.905985 + 0.423310i \(0.860868\pi\)
\(774\) 0 0
\(775\) −0.662620 1.14769i −0.0238020 0.0412263i
\(776\) 4.60852 + 7.98219i 0.165436 + 0.286544i
\(777\) 0 0
\(778\) 29.2642 50.6870i 1.04917 1.81722i
\(779\) −58.2458 −2.08687
\(780\) 0 0
\(781\) −0.473726 −0.0169513
\(782\) −12.1645 21.0695i −0.435000 0.753442i
\(783\) 0 0
\(784\) −58.1765 16.7638i −2.07773 0.598707i
\(785\) −3.34307 5.79036i −0.119319 0.206667i
\(786\) 0 0
\(787\) 4.16234 + 7.20939i 0.148372 + 0.256987i 0.930626 0.365972i \(-0.119264\pi\)
−0.782254 + 0.622959i \(0.785930\pi\)
\(788\) −34.9702 60.5702i −1.24576 2.15772i
\(789\) 0 0
\(790\) 23.4959 + 40.6961i 0.835947 + 1.44790i
\(791\) −15.3484 + 6.18953i −0.545725 + 0.220074i
\(792\) 0 0
\(793\) 15.2181 + 26.3586i 0.540412 + 0.936020i
\(794\) −54.8919 −1.94804
\(795\) 0 0
\(796\) 12.8232 0.454508
\(797\) −19.6387 + 34.0152i −0.695637 + 1.20488i 0.274329 + 0.961636i \(0.411544\pi\)
−0.969966 + 0.243242i \(0.921789\pi\)
\(798\) 0 0
\(799\) 4.45267 + 7.71224i 0.157524 + 0.272840i
\(800\) −0.898421 1.55611i −0.0317640 0.0550168i
\(801\) 0 0
\(802\) −5.52975 + 9.57781i −0.195262 + 0.338204i
\(803\) −0.562673 + 0.974578i −0.0198563 + 0.0343921i
\(804\) 0 0
\(805\) 29.2700 + 22.8989i 1.03163 + 0.807080i
\(806\) −34.3540 + 59.5029i −1.21007 + 2.09590i
\(807\) 0 0
\(808\) −126.618 −4.45440
\(809\) 11.4525 19.8364i 0.402649 0.697409i −0.591395 0.806382i \(-0.701423\pi\)
0.994045 + 0.108973i \(0.0347561\pi\)
\(810\) 0 0
\(811\) −17.0254 −0.597842 −0.298921 0.954278i \(-0.596627\pi\)
−0.298921 + 0.954278i \(0.596627\pi\)
\(812\) −26.9588 + 10.8717i −0.946070 + 0.381521i
\(813\) 0 0
\(814\) −54.8893 −1.92387
\(815\) 1.37533 + 2.38214i 0.0481758 + 0.0834429i
\(816\) 0 0
\(817\) −3.07819 + 5.33158i −0.107692 + 0.186528i
\(818\) 91.3996 3.19571
\(819\) 0 0
\(820\) −84.5864 −2.95389
\(821\) 16.3565 28.3303i 0.570845 0.988733i −0.425634 0.904895i \(-0.639949\pi\)
0.996479 0.0838376i \(-0.0267177\pi\)
\(822\) 0 0
\(823\) 13.9457 + 24.1547i 0.486118 + 0.841981i 0.999873 0.0159561i \(-0.00507920\pi\)
−0.513755 + 0.857937i \(0.671746\pi\)
\(824\) 94.3610 3.28722
\(825\) 0 0
\(826\) 24.9285 + 19.5024i 0.867375 + 0.678577i
\(827\) 17.5753 0.611153 0.305576 0.952168i \(-0.401151\pi\)
0.305576 + 0.952168i \(0.401151\pi\)
\(828\) 0 0
\(829\) 0.997731 1.72812i 0.0346526 0.0600201i −0.848179 0.529710i \(-0.822301\pi\)
0.882832 + 0.469690i \(0.155634\pi\)
\(830\) 25.3904 0.881312
\(831\) 0 0
\(832\) −9.66123 + 16.7337i −0.334943 + 0.580138i
\(833\) 10.2807 + 2.96244i 0.356207 + 0.102642i
\(834\) 0 0
\(835\) −16.4040 + 28.4126i −0.567684 + 0.983257i
\(836\) 51.2157 88.7082i 1.77133 3.06804i
\(837\) 0 0
\(838\) 4.85003 + 8.40049i 0.167541 + 0.290190i
\(839\) −11.3262 19.6175i −0.391023 0.677272i 0.601562 0.798826i \(-0.294545\pi\)
−0.992585 + 0.121555i \(0.961212\pi\)
\(840\) 0 0
\(841\) 11.7613 20.3712i 0.405563 0.702455i
\(842\) 63.4750 2.18749
\(843\) 0 0
\(844\) −43.0761 −1.48274
\(845\) −5.95863 10.3206i −0.204983 0.355041i
\(846\) 0 0
\(847\) 4.70976 + 3.68460i 0.161829 + 0.126605i
\(848\) −32.1596 55.7020i −1.10436 1.91281i
\(849\) 0 0
\(850\) 0.421200 + 0.729541i 0.0144471 + 0.0250230i
\(851\) 22.0732 + 38.2319i 0.756659 + 1.31057i
\(852\) 0 0
\(853\) 6.65119 + 11.5202i 0.227732 + 0.394444i 0.957136 0.289640i \(-0.0935355\pi\)
−0.729403 + 0.684084i \(0.760202\pi\)
\(854\) 6.82481 48.3329i 0.233540 1.65392i
\(855\) 0 0
\(856\) −28.3697 49.1377i −0.969656 1.67949i
\(857\) −24.3329 −0.831197 −0.415599 0.909548i \(-0.636428\pi\)
−0.415599 + 0.909548i \(0.636428\pi\)
\(858\) 0 0
\(859\) 15.6185 0.532897 0.266448 0.963849i \(-0.414150\pi\)
0.266448 + 0.963849i \(0.414150\pi\)
\(860\) −4.47024 + 7.74268i −0.152434 + 0.264023i
\(861\) 0 0
\(862\) 31.3807 + 54.3530i 1.06883 + 1.85127i
\(863\) −18.3558 31.7931i −0.624838 1.08225i −0.988572 0.150748i \(-0.951832\pi\)
0.363735 0.931503i \(-0.381502\pi\)
\(864\) 0 0
\(865\) −6.21451 + 10.7638i −0.211300 + 0.365982i
\(866\) −11.1264 + 19.2715i −0.378091 + 0.654872i
\(867\) 0 0
\(868\) 71.6632 28.8996i 2.43241 0.980916i
\(869\) −11.7582 + 20.3658i −0.398870 + 0.690863i
\(870\) 0 0
\(871\) −14.1936 −0.480931
\(872\) 19.1299 33.1339i 0.647820 1.12206i
\(873\) 0 0
\(874\) −117.482 −3.97388
\(875\) 22.7754 + 17.8180i 0.769950 + 0.602358i
\(876\) 0 0
\(877\) −50.1983 −1.69508 −0.847538 0.530734i \(-0.821916\pi\)
−0.847538 + 0.530734i \(0.821916\pi\)
\(878\) −34.3581 59.5099i −1.15953 2.00836i
\(879\) 0 0
\(880\) 29.1902 50.5589i 0.984001 1.70434i
\(881\) 51.6426 1.73989 0.869943 0.493153i \(-0.164156\pi\)
0.869943 + 0.493153i \(0.164156\pi\)
\(882\) 0 0
\(883\) −4.77954 −0.160844 −0.0804222 0.996761i \(-0.525627\pi\)
−0.0804222 + 0.996761i \(0.525627\pi\)
\(884\) 15.3134 26.5236i 0.515046 0.892086i
\(885\) 0 0
\(886\) −35.7163 61.8625i −1.19991 2.07831i
\(887\) −31.1565 −1.04613 −0.523066 0.852292i \(-0.675212\pi\)
−0.523066 + 0.852292i \(0.675212\pi\)
\(888\) 0 0
\(889\) 11.6698 + 9.12967i 0.391392 + 0.306199i
\(890\) −35.7791 −1.19932
\(891\) 0 0
\(892\) 66.5270 115.228i 2.22749 3.85812i
\(893\) 43.0029 1.43904
\(894\) 0 0
\(895\) −6.91419 + 11.9757i −0.231116 + 0.400304i
\(896\) −12.6561 + 5.10382i −0.422811 + 0.170507i
\(897\) 0 0
\(898\) −20.2222 + 35.0258i −0.674823 + 1.16883i
\(899\) 7.28009 12.6095i 0.242805 0.420550i
\(900\) 0 0
\(901\) 5.68312 + 9.84345i 0.189332 + 0.327933i
\(902\) −30.1821 52.2769i −1.00495 1.74063i
\(903\) 0 0
\(904\) 21.8039 37.7655i 0.725187 1.25606i
\(905\) 29.0917 0.967040
\(906\) 0 0
\(907\) −22.2370 −0.738368 −0.369184 0.929356i \(-0.620363\pi\)
−0.369184 + 0.929356i \(0.620363\pi\)
\(908\) 4.86340 + 8.42366i 0.161398 + 0.279549i
\(909\) 0 0
\(910\) −9.32784 + 66.0592i −0.309215 + 2.18984i
\(911\) −1.01685 1.76123i −0.0336897 0.0583523i 0.848689 0.528892i \(-0.177392\pi\)
−0.882379 + 0.470540i \(0.844059\pi\)
\(912\) 0 0
\(913\) 6.35314 + 11.0040i 0.210258 + 0.364178i
\(914\) 42.6081 + 73.7993i 1.40935 + 2.44107i
\(915\) 0 0
\(916\) 36.8172 + 63.7693i 1.21647 + 2.10700i
\(917\) −14.8467 11.6151i −0.490280 0.383563i
\(918\) 0 0
\(919\) 23.8031 + 41.2282i 0.785193 + 1.35999i 0.928884 + 0.370371i \(0.120769\pi\)
−0.143691 + 0.989623i \(0.545897\pi\)
\(920\) −97.9249 −3.22849
\(921\) 0 0
\(922\) −90.3460 −2.97539
\(923\) −0.341991 + 0.592345i −0.0112568 + 0.0194973i
\(924\) 0 0
\(925\) −0.764295 1.32380i −0.0251299 0.0435262i
\(926\) −4.01373 6.95198i −0.131899 0.228456i
\(927\) 0 0
\(928\) 9.87080 17.0967i 0.324025 0.561228i
\(929\) 15.6050 27.0287i 0.511985 0.886784i −0.487919 0.872889i \(-0.662244\pi\)
0.999903 0.0138945i \(-0.00442289\pi\)
\(930\) 0 0
\(931\) 37.2111 35.8409i 1.21954 1.17464i
\(932\) 68.6624 118.927i 2.24911 3.89557i
\(933\) 0 0
\(934\) 27.2386 0.891273
\(935\) −5.15838 + 8.93458i −0.168697 + 0.292192i
\(936\) 0 0
\(937\) −18.0157 −0.588548 −0.294274 0.955721i \(-0.595078\pi\)
−0.294274 + 0.955721i \(0.595078\pi\)
\(938\) 17.9284 + 14.0260i 0.585383 + 0.457965i
\(939\) 0 0
\(940\) 62.4502 2.03690
\(941\) −21.8559 37.8555i −0.712481 1.23405i −0.963923 0.266181i \(-0.914238\pi\)
0.251442 0.967872i \(-0.419095\pi\)
\(942\) 0 0
\(943\) −24.2749 + 42.0453i −0.790499 + 1.36918i
\(944\) −39.9898 −1.30156
\(945\) 0 0
\(946\) −6.38028 −0.207441
\(947\) −22.2393 + 38.5197i −0.722681 + 1.25172i 0.237240 + 0.971451i \(0.423757\pi\)
−0.959921 + 0.280270i \(0.909576\pi\)
\(948\) 0 0
\(949\) 0.812405 + 1.40713i 0.0263718 + 0.0456773i
\(950\) 4.06787 0.131979
\(951\) 0 0
\(952\) −26.1461 + 10.5439i −0.847400 + 0.341731i
\(953\) −52.3118 −1.69454 −0.847272 0.531159i \(-0.821757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(954\) 0 0
\(955\) 27.5496 47.7172i 0.891483 1.54409i
\(956\) 83.1916 2.69061
\(957\) 0 0
\(958\) −21.9642 + 38.0432i −0.709633 + 1.22912i
\(959\) −18.5006 14.4736i −0.597415 0.467378i
\(960\) 0 0
\(961\) −3.85225 + 6.67230i −0.124266 + 0.215236i
\(962\) −39.6254 + 68.6333i −1.27758 + 2.21283i
\(963\) 0 0
\(964\) 61.9840 + 107.359i 1.99637 + 3.45781i
\(965\) 0.900434 + 1.55960i 0.0289860 + 0.0502052i
\(966\) 0 0
\(967\) −0.331836 + 0.574757i −0.0106711 + 0.0184829i −0.871312 0.490730i \(-0.836730\pi\)
0.860641 + 0.509213i \(0.170063\pi\)
\(968\) −15.7569 −0.506444
\(969\) 0 0
\(970\) −7.81022 −0.250771
\(971\) 29.2598 + 50.6795i 0.938993 + 1.62638i 0.767354 + 0.641224i \(0.221573\pi\)
0.171639 + 0.985160i \(0.445094\pi\)
\(972\) 0 0
\(973\) 20.5403 8.28326i 0.658490 0.265549i
\(974\) 17.0840 + 29.5903i 0.547405 + 0.948134i
\(975\) 0 0
\(976\) 30.8364 + 53.4101i 0.987048 + 1.70962i
\(977\) −27.0201 46.8002i −0.864450 1.49727i −0.867593 0.497276i \(-0.834334\pi\)
0.00314297 0.999995i \(-0.499000\pi\)
\(978\) 0 0
\(979\) −8.95258 15.5063i −0.286126 0.495584i
\(980\) 54.0391 52.0492i 1.72622 1.66265i
\(981\) 0 0
\(982\) −20.4187 35.3662i −0.651586 1.12858i
\(983\) −21.8521 −0.696974 −0.348487 0.937314i \(-0.613304\pi\)
−0.348487 + 0.937314i \(0.613304\pi\)
\(984\) 0 0
\(985\) 34.0163 1.08385
\(986\) −4.62766 + 8.01534i −0.147375 + 0.255260i
\(987\) 0 0
\(988\) −73.9469 128.080i −2.35256 4.07476i
\(989\) 2.56577 + 4.44404i 0.0815867 + 0.141312i
\(990\) 0 0
\(991\) 6.91507 11.9773i 0.219664 0.380470i −0.735041 0.678023i \(-0.762837\pi\)
0.954705 + 0.297553i \(0.0961704\pi\)
\(992\) −26.2390 + 45.4473i −0.833089 + 1.44295i
\(993\) 0 0
\(994\) 1.01733 0.410259i 0.0322678 0.0130126i
\(995\) −3.11836 + 5.40116i −0.0988586 + 0.171228i
\(996\) 0 0
\(997\) −6.27402 −0.198700 −0.0993501 0.995053i \(-0.531676\pi\)
−0.0993501 + 0.995053i \(0.531676\pi\)
\(998\) −55.5584 + 96.2299i −1.75867 + 3.04611i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.109.1 16
3.2 odd 2 inner 567.2.g.l.109.8 16
7.2 even 3 567.2.h.l.352.8 16
9.2 odd 6 567.2.h.l.298.1 16
9.4 even 3 567.2.e.g.487.1 yes 16
9.5 odd 6 567.2.e.g.487.8 yes 16
9.7 even 3 567.2.h.l.298.8 16
21.2 odd 6 567.2.h.l.352.1 16
63.2 odd 6 inner 567.2.g.l.541.8 16
63.4 even 3 3969.2.a.bg.1.8 8
63.16 even 3 inner 567.2.g.l.541.1 16
63.23 odd 6 567.2.e.g.163.8 yes 16
63.31 odd 6 3969.2.a.bf.1.8 8
63.32 odd 6 3969.2.a.bg.1.1 8
63.58 even 3 567.2.e.g.163.1 16
63.59 even 6 3969.2.a.bf.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.1 16 63.58 even 3
567.2.e.g.163.8 yes 16 63.23 odd 6
567.2.e.g.487.1 yes 16 9.4 even 3
567.2.e.g.487.8 yes 16 9.5 odd 6
567.2.g.l.109.1 16 1.1 even 1 trivial
567.2.g.l.109.8 16 3.2 odd 2 inner
567.2.g.l.541.1 16 63.16 even 3 inner
567.2.g.l.541.8 16 63.2 odd 6 inner
567.2.h.l.298.1 16 9.2 odd 6
567.2.h.l.298.8 16 9.7 even 3
567.2.h.l.352.1 16 21.2 odd 6
567.2.h.l.352.8 16 7.2 even 3
3969.2.a.bf.1.1 8 63.59 even 6
3969.2.a.bf.1.8 8 63.31 odd 6
3969.2.a.bg.1.1 8 63.32 odd 6
3969.2.a.bg.1.8 8 63.4 even 3