Properties

Label 2-57-1.1-c9-0-7
Degree $2$
Conductor $57$
Sign $1$
Analytic cond. $29.3570$
Root an. cond. $5.41821$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18.3·2-s − 81·3-s − 173.·4-s + 1.62e3·5-s + 1.48e3·6-s + 7.42e3·7-s + 1.26e4·8-s + 6.56e3·9-s − 2.98e4·10-s − 7.47e4·11-s + 1.40e4·12-s − 3.15e4·13-s − 1.36e5·14-s − 1.31e5·15-s − 1.43e5·16-s + 2.75e5·17-s − 1.20e5·18-s + 1.30e5·19-s − 2.82e5·20-s − 6.01e5·21-s + 1.37e6·22-s − 1.03e6·23-s − 1.02e6·24-s + 6.86e5·25-s + 5.79e5·26-s − 5.31e5·27-s − 1.29e6·28-s + ⋯
L(s)  = 1  − 0.812·2-s − 0.577·3-s − 0.339·4-s + 1.16·5-s + 0.469·6-s + 1.16·7-s + 1.08·8-s + 0.333·9-s − 0.944·10-s − 1.53·11-s + 0.195·12-s − 0.306·13-s − 0.950·14-s − 0.671·15-s − 0.545·16-s + 0.799·17-s − 0.270·18-s + 0.229·19-s − 0.394·20-s − 0.674·21-s + 1.25·22-s − 0.771·23-s − 0.628·24-s + 0.351·25-s + 0.248·26-s − 0.192·27-s − 0.396·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57\)    =    \(3 \cdot 19\)
Sign: $1$
Analytic conductor: \(29.3570\)
Root analytic conductor: \(5.41821\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 57,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.176933595\)
\(L(\frac12)\) \(\approx\) \(1.176933595\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
19 \( 1 - 1.30e5T \)
good2 \( 1 + 18.3T + 512T^{2} \)
5 \( 1 - 1.62e3T + 1.95e6T^{2} \)
7 \( 1 - 7.42e3T + 4.03e7T^{2} \)
11 \( 1 + 7.47e4T + 2.35e9T^{2} \)
13 \( 1 + 3.15e4T + 1.06e10T^{2} \)
17 \( 1 - 2.75e5T + 1.18e11T^{2} \)
23 \( 1 + 1.03e6T + 1.80e12T^{2} \)
29 \( 1 - 3.07e6T + 1.45e13T^{2} \)
31 \( 1 - 9.42e6T + 2.64e13T^{2} \)
37 \( 1 + 1.67e7T + 1.29e14T^{2} \)
41 \( 1 + 1.58e7T + 3.27e14T^{2} \)
43 \( 1 - 2.72e7T + 5.02e14T^{2} \)
47 \( 1 - 4.46e7T + 1.11e15T^{2} \)
53 \( 1 - 9.15e7T + 3.29e15T^{2} \)
59 \( 1 - 1.67e8T + 8.66e15T^{2} \)
61 \( 1 + 5.39e7T + 1.16e16T^{2} \)
67 \( 1 + 2.55e8T + 2.72e16T^{2} \)
71 \( 1 - 2.56e8T + 4.58e16T^{2} \)
73 \( 1 + 2.80e8T + 5.88e16T^{2} \)
79 \( 1 - 1.85e8T + 1.19e17T^{2} \)
83 \( 1 - 1.79e8T + 1.86e17T^{2} \)
89 \( 1 - 1.28e8T + 3.50e17T^{2} \)
97 \( 1 - 9.23e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45098227953455890143237215494, −12.01604450528439635890335197297, −10.40071962435550651390092212582, −10.11742513034691025141163551454, −8.536813422571917357286852728546, −7.53254064425732765038100810834, −5.62243600178029516227108758436, −4.78411227514485472029163337560, −2.12959690721544624881011367216, −0.826245364016455317476660575095, 0.826245364016455317476660575095, 2.12959690721544624881011367216, 4.78411227514485472029163337560, 5.62243600178029516227108758436, 7.53254064425732765038100810834, 8.536813422571917357286852728546, 10.11742513034691025141163551454, 10.40071962435550651390092212582, 12.01604450528439635890335197297, 13.45098227953455890143237215494

Graph of the $Z$-function along the critical line