Properties

Label 57.10.a.b
Level 5757
Weight 1010
Character orbit 57.a
Self dual yes
Analytic conductor 29.35729.357
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,10,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 57=319 57 = 3 \cdot 19
Weight: k k == 10 10
Character orbit: [χ][\chi] == 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 29.357042661329.3570426613
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x63x51860x4+264x3+626016x2+4023504x725760 x^{6} - 3x^{5} - 1860x^{4} + 264x^{3} + 626016x^{2} + 4023504x - 725760 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2333 2^{3}\cdot 3^{3}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+6)q281q3+(β38β1+144)q4+(β5+β4+29β1+179)q5+(81β1486)q6+(3β4+7β3++1285)q7++(91854β5+72171β4+61561863)q99+O(q100) q + ( - \beta_1 + 6) q^{2} - 81 q^{3} + (\beta_{3} - 8 \beta_1 + 144) q^{4} + ( - \beta_{5} + \beta_{4} + 29 \beta_1 + 179) q^{5} + (81 \beta_1 - 486) q^{6} + ( - 3 \beta_{4} + 7 \beta_{3} + \cdots + 1285) q^{7}+ \cdots + (91854 \beta_{5} + 72171 \beta_{4} + \cdots - 61561863) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+33q2486q3+837q4+1158q52673q6+7890q7+18327q8+39366q9100152q1055530q1167797q12+90432q13188448q1493798q15+474897q16+364332330q99+O(q100) 6 q + 33 q^{2} - 486 q^{3} + 837 q^{4} + 1158 q^{5} - 2673 q^{6} + 7890 q^{7} + 18327 q^{8} + 39366 q^{9} - 100152 q^{10} - 55530 q^{11} - 67797 q^{12} + 90432 q^{13} - 188448 q^{14} - 93798 q^{15} + 474897 q^{16}+ \cdots - 364332330 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x51860x4+264x3+626016x2+4023504x725760 x^{6} - 3x^{5} - 1860x^{4} + 264x^{3} + 626016x^{2} + 4023504x - 725760 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (15ν547ν425530ν3+42820ν2+6429864ν+22805376)/70912 ( 15\nu^{5} - 47\nu^{4} - 25530\nu^{3} + 42820\nu^{2} + 6429864\nu + 22805376 ) / 70912 Copy content Toggle raw display
β3\beta_{3}== ν24ν620 \nu^{2} - 4\nu - 620 Copy content Toggle raw display
β4\beta_{4}== (87ν51159ν4152506ν3+1524772ν2+41842216ν+10203264)/70912 ( 87\nu^{5} - 1159\nu^{4} - 152506\nu^{3} + 1524772\nu^{2} + 41842216\nu + 10203264 ) / 70912 Copy content Toggle raw display
β5\beta_{5}== (ν577ν4594ν3+119564ν2988696ν18109856)/8864 ( \nu^{5} - 77\nu^{4} - 594\nu^{3} + 119564\nu^{2} - 988696\nu - 18109856 ) / 8864 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4β1+620 \beta_{3} + 4\beta _1 + 620 Copy content Toggle raw display
ν3\nu^{3}== 6β54β47β3+20β2+1188β1+2062 6\beta_{5} - 4\beta_{4} - 7\beta_{3} + 20\beta_{2} + 1188\beta _1 + 2062 Copy content Toggle raw display
ν4\nu^{4}== 30β560β4+1475β3+364β2+4952β1+744778 -30\beta_{5} - 60\beta_{4} + 1475\beta_{3} + 364\beta_{2} + 4952\beta _1 + 744778 Copy content Toggle raw display
ν5\nu^{5}== 10118β56996β410147β3+39908β2+1597416β1+2552910 10118\beta_{5} - 6996\beta_{4} - 10147\beta_{3} + 39908\beta_{2} + 1597416\beta _1 + 2552910 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
38.3673
24.3919
0.175583
−8.10134
−14.6700
−37.1634
−32.3673 −81.0000 535.640 542.116 2621.75 4515.51 −765.163 6561.00 −17546.8
1.2 −18.3919 −81.0000 −173.738 1624.78 1489.74 7425.81 12612.0 6561.00 −29882.9
1.3 5.82442 −81.0000 −478.076 2494.48 −471.778 −7505.29 −5766.62 6561.00 14528.9
1.4 14.1013 −81.0000 −313.152 −1990.91 −1142.21 5786.77 −11635.8 6561.00 −28074.4
1.5 20.6700 −81.0000 −84.7493 −1160.64 −1674.27 −6983.68 −12334.8 6561.00 −23990.6
1.6 43.1634 −81.0000 1351.08 −351.832 −3496.23 4650.87 36217.3 6561.00 −15186.2
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.10.a.b 6
3.b odd 2 1 171.10.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.10.a.b 6 1.a even 1 1 trivial
171.10.a.b 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2633T251410T24+41136T23+241968T229984384T2+43621632 T_{2}^{6} - 33T_{2}^{5} - 1410T_{2}^{4} + 41136T_{2}^{3} + 241968T_{2}^{2} - 9984384T_{2} + 43621632 acting on S10new(Γ0(57))S_{10}^{\mathrm{new}}(\Gamma_0(57)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T633T5++43621632 T^{6} - 33 T^{5} + \cdots + 43621632 Copy content Toggle raw display
33 (T+81)6 (T + 81)^{6} Copy content Toggle raw display
55 T6+17 ⁣ ⁣00 T^{6} + \cdots - 17\!\cdots\!00 Copy content Toggle raw display
77 T6++47 ⁣ ⁣68 T^{6} + \cdots + 47\!\cdots\!68 Copy content Toggle raw display
1111 T6+30 ⁣ ⁣52 T^{6} + \cdots - 30\!\cdots\!52 Copy content Toggle raw display
1313 T6+65 ⁣ ⁣00 T^{6} + \cdots - 65\!\cdots\!00 Copy content Toggle raw display
1717 T6++31 ⁣ ⁣00 T^{6} + \cdots + 31\!\cdots\!00 Copy content Toggle raw display
1919 (T130321)6 (T - 130321)^{6} Copy content Toggle raw display
2323 T6++20 ⁣ ⁣76 T^{6} + \cdots + 20\!\cdots\!76 Copy content Toggle raw display
2929 T6+30 ⁣ ⁣40 T^{6} + \cdots - 30\!\cdots\!40 Copy content Toggle raw display
3131 T6+17 ⁣ ⁣88 T^{6} + \cdots - 17\!\cdots\!88 Copy content Toggle raw display
3737 T6+83 ⁣ ⁣12 T^{6} + \cdots - 83\!\cdots\!12 Copy content Toggle raw display
4141 T6+22 ⁣ ⁣84 T^{6} + \cdots - 22\!\cdots\!84 Copy content Toggle raw display
4343 T6++87 ⁣ ⁣48 T^{6} + \cdots + 87\!\cdots\!48 Copy content Toggle raw display
4747 T6+12 ⁣ ⁣48 T^{6} + \cdots - 12\!\cdots\!48 Copy content Toggle raw display
5353 T6+36 ⁣ ⁣16 T^{6} + \cdots - 36\!\cdots\!16 Copy content Toggle raw display
5959 T6++32 ⁣ ⁣56 T^{6} + \cdots + 32\!\cdots\!56 Copy content Toggle raw display
6161 T6+77 ⁣ ⁣80 T^{6} + \cdots - 77\!\cdots\!80 Copy content Toggle raw display
6767 T6++98 ⁣ ⁣60 T^{6} + \cdots + 98\!\cdots\!60 Copy content Toggle raw display
7171 T6+13 ⁣ ⁣80 T^{6} + \cdots - 13\!\cdots\!80 Copy content Toggle raw display
7373 T6+15 ⁣ ⁣08 T^{6} + \cdots - 15\!\cdots\!08 Copy content Toggle raw display
7979 T6++31 ⁣ ⁣68 T^{6} + \cdots + 31\!\cdots\!68 Copy content Toggle raw display
8383 T6+19 ⁣ ⁣08 T^{6} + \cdots - 19\!\cdots\!08 Copy content Toggle raw display
8989 T6++18 ⁣ ⁣40 T^{6} + \cdots + 18\!\cdots\!40 Copy content Toggle raw display
9797 T6++19 ⁣ ⁣28 T^{6} + \cdots + 19\!\cdots\!28 Copy content Toggle raw display
show more
show less