Properties

Label 57.10.a.b
Level $57$
Weight $10$
Character orbit 57.a
Self dual yes
Analytic conductor $29.357$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,10,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3570426613\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 1860x^{4} + 264x^{3} + 626016x^{2} + 4023504x - 725760 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 6) q^{2} - 81 q^{3} + (\beta_{3} - 8 \beta_1 + 144) q^{4} + ( - \beta_{5} + \beta_{4} + 29 \beta_1 + 179) q^{5} + (81 \beta_1 - 486) q^{6} + ( - 3 \beta_{4} + 7 \beta_{3} + \cdots + 1285) q^{7}+ \cdots + (91854 \beta_{5} + 72171 \beta_{4} + \cdots - 61561863) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 33 q^{2} - 486 q^{3} + 837 q^{4} + 1158 q^{5} - 2673 q^{6} + 7890 q^{7} + 18327 q^{8} + 39366 q^{9} - 100152 q^{10} - 55530 q^{11} - 67797 q^{12} + 90432 q^{13} - 188448 q^{14} - 93798 q^{15} + 474897 q^{16}+ \cdots - 364332330 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 1860x^{4} + 264x^{3} + 626016x^{2} + 4023504x - 725760 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 15\nu^{5} - 47\nu^{4} - 25530\nu^{3} + 42820\nu^{2} + 6429864\nu + 22805376 ) / 70912 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 4\nu - 620 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 87\nu^{5} - 1159\nu^{4} - 152506\nu^{3} + 1524772\nu^{2} + 41842216\nu + 10203264 ) / 70912 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 77\nu^{4} - 594\nu^{3} + 119564\nu^{2} - 988696\nu - 18109856 ) / 8864 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4\beta _1 + 620 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{5} - 4\beta_{4} - 7\beta_{3} + 20\beta_{2} + 1188\beta _1 + 2062 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -30\beta_{5} - 60\beta_{4} + 1475\beta_{3} + 364\beta_{2} + 4952\beta _1 + 744778 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10118\beta_{5} - 6996\beta_{4} - 10147\beta_{3} + 39908\beta_{2} + 1597416\beta _1 + 2552910 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
38.3673
24.3919
0.175583
−8.10134
−14.6700
−37.1634
−32.3673 −81.0000 535.640 542.116 2621.75 4515.51 −765.163 6561.00 −17546.8
1.2 −18.3919 −81.0000 −173.738 1624.78 1489.74 7425.81 12612.0 6561.00 −29882.9
1.3 5.82442 −81.0000 −478.076 2494.48 −471.778 −7505.29 −5766.62 6561.00 14528.9
1.4 14.1013 −81.0000 −313.152 −1990.91 −1142.21 5786.77 −11635.8 6561.00 −28074.4
1.5 20.6700 −81.0000 −84.7493 −1160.64 −1674.27 −6983.68 −12334.8 6561.00 −23990.6
1.6 43.1634 −81.0000 1351.08 −351.832 −3496.23 4650.87 36217.3 6561.00 −15186.2
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.10.a.b 6
3.b odd 2 1 171.10.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.10.a.b 6 1.a even 1 1 trivial
171.10.a.b 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 33T_{2}^{5} - 1410T_{2}^{4} + 41136T_{2}^{3} + 241968T_{2}^{2} - 9984384T_{2} + 43621632 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(57))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 33 T^{5} + \cdots + 43621632 \) Copy content Toggle raw display
$3$ \( (T + 81)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 47\!\cdots\!68 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 30\!\cdots\!52 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T - 130321)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 20\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 30\!\cdots\!40 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 17\!\cdots\!88 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 83\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 22\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 87\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 12\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 36\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 32\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 77\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 98\!\cdots\!60 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 13\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 15\!\cdots\!08 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 31\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 19\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 18\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 19\!\cdots\!28 \) Copy content Toggle raw display
show more
show less