[N,k,chi] = [57,10,Mod(1,57)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(57, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("57.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 6 − 33 T 2 5 − 1410 T 2 4 + 41136 T 2 3 + 241968 T 2 2 − 9984384 T 2 + 43621632 T_{2}^{6} - 33T_{2}^{5} - 1410T_{2}^{4} + 41136T_{2}^{3} + 241968T_{2}^{2} - 9984384T_{2} + 43621632 T 2 6 − 3 3 T 2 5 − 1 4 1 0 T 2 4 + 4 1 1 3 6 T 2 3 + 2 4 1 9 6 8 T 2 2 − 9 9 8 4 3 8 4 T 2 + 4 3 6 2 1 6 3 2
T2^6 - 33*T2^5 - 1410*T2^4 + 41136*T2^3 + 241968*T2^2 - 9984384*T2 + 43621632
acting on S 10 n e w ( Γ 0 ( 57 ) ) S_{10}^{\mathrm{new}}(\Gamma_0(57)) S 1 0 n e w ( Γ 0 ( 5 7 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 − 33 T 5 + ⋯ + 43621632 T^{6} - 33 T^{5} + \cdots + 43621632 T 6 − 3 3 T 5 + ⋯ + 4 3 6 2 1 6 3 2
T^6 - 33*T^5 - 1410*T^4 + 41136*T^3 + 241968*T^2 - 9984384*T + 43621632
3 3 3
( T + 81 ) 6 (T + 81)^{6} ( T + 8 1 ) 6
(T + 81)^6
5 5 5
T 6 + ⋯ − 17 ⋯ 00 T^{6} + \cdots - 17\!\cdots\!00 T 6 + ⋯ − 1 7 ⋯ 0 0
T^6 - 1158*T^5 - 6624939*T^4 + 4698630420*T^3 + 10008415595100*T^2 - 2402860621086000*T - 1786294622492640000
7 7 7
T 6 + ⋯ + 47 ⋯ 68 T^{6} + \cdots + 47\!\cdots\!68 T 6 + ⋯ + 4 7 ⋯ 6 8
T^6 - 7890*T^5 - 86749383*T^4 + 837323257064*T^3 + 876064863623376*T^2 - 22114052526233208576*T + 47301227937298998842368
11 11 1 1
T 6 + ⋯ − 30 ⋯ 52 T^{6} + \cdots - 30\!\cdots\!52 T 6 + ⋯ − 3 0 ⋯ 5 2
T^6 + 55530*T^5 - 5613126327*T^4 - 236413894938624*T^3 + 9291923334247521456*T^2 + 230597874125347041312768*T - 3001383321293692007564516352
13 13 1 3
T 6 + ⋯ − 65 ⋯ 00 T^{6} + \cdots - 65\!\cdots\!00 T 6 + ⋯ − 6 5 ⋯ 0 0
T^6 - 90432*T^5 - 32950553136*T^4 + 3295686735442256*T^3 + 78487068486232588464*T^2 - 3785119181062264534837056*T - 65336385504086573106988774400
17 17 1 7
T 6 + ⋯ + 31 ⋯ 00 T^{6} + \cdots + 31\!\cdots\!00 T 6 + ⋯ + 3 1 ⋯ 0 0
T^6 + 29298*T^5 - 364462954887*T^4 + 34121423732312400*T^3 + 30567211791678685065000*T^2 - 6282691447875165869701500000*T + 312752182641253766448009356250000
19 19 1 9
( T − 130321 ) 6 (T - 130321)^{6} ( T − 1 3 0 3 2 1 ) 6
(T - 130321)^6
23 23 2 3
T 6 + ⋯ + 20 ⋯ 76 T^{6} + \cdots + 20\!\cdots\!76 T 6 + ⋯ + 2 0 ⋯ 7 6
T^6 - 5607516*T^5 + 7938200199708*T^4 + 3864719412552235728*T^3 - 11838146088534782140744512*T^2 + 2003667344940879025154186570496*T + 2015658035932096982789646090796210176
29 29 2 9
T 6 + ⋯ − 30 ⋯ 40 T^{6} + \cdots - 30\!\cdots\!40 T 6 + ⋯ − 3 0 ⋯ 4 0
T^6 - 13190340*T^5 + 52308178011900*T^4 - 13008842795218201440*T^3 - 344244717912805493490001680*T^2 + 665497416002651467693777172578752*T - 308910364682474253393193581755161928640
31 31 3 1
T 6 + ⋯ − 17 ⋯ 88 T^{6} + \cdots - 17\!\cdots\!88 T 6 + ⋯ − 1 7 ⋯ 8 8
T^6 - 16053744*T^5 - 1824046095264*T^4 + 983300775520135325264*T^3 - 4067109098159460273157960848*T^2 + 5009981397199002491724311361134016*T - 1794657710265057997795221484329163301888
37 37 3 7
T 6 + ⋯ − 83 ⋯ 12 T^{6} + \cdots - 83\!\cdots\!12 T 6 + ⋯ − 8 3 ⋯ 1 2
T^6 - 7529988*T^5 - 461889863961108*T^4 + 2210054359323241745648*T^3 + 45826064754215370977932699776*T^2 - 157935070723218787271788614395593728*T - 834721256988873165976489868375137970266112
41 41 4 1
T 6 + ⋯ − 22 ⋯ 84 T^{6} + \cdots - 22\!\cdots\!84 T 6 + ⋯ − 2 2 ⋯ 8 4
T^6 - 30819624*T^5 - 800388334160376*T^4 + 17285314251930709687584*T^3 + 252775556807771858621197141200*T^2 - 719644464850369148093447837223261696*T - 2262349797647892227440633017990223856630784
43 43 4 3
T 6 + ⋯ + 87 ⋯ 48 T^{6} + \cdots + 87\!\cdots\!48 T 6 + ⋯ + 8 7 ⋯ 4 8
T^6 + 16328262*T^5 - 2075738293133127*T^4 - 24521870681482443029632*T^3 + 976494972247447807103044548000*T^2 + 9252207605698905074049979024480644096*T + 8728091508953429954945380668165505676424448
47 47 4 7
T 6 + ⋯ − 12 ⋯ 48 T^{6} + \cdots - 12\!\cdots\!48 T 6 + ⋯ − 1 2 ⋯ 4 8
T^6 - 102989406*T^5 + 987087860321925*T^4 + 135907265255797943300892*T^3 - 1927801689884548951740093851028*T^2 - 38015499284172866959661019955684457520*T - 128100543381884678115473081303073641516965248
53 53 5 3
T 6 + ⋯ − 36 ⋯ 16 T^{6} + \cdots - 36\!\cdots\!16 T 6 + ⋯ − 3 6 ⋯ 1 6
T^6 + 20749740*T^5 - 11156374519821876*T^4 - 131753859726491528268768*T^3 + 21068388192056595420307633558896*T^2 - 114995359434968390401622716629878851392*T - 3668865333790079615637988026018235052630260416
59 59 5 9
T 6 + ⋯ + 32 ⋯ 56 T^{6} + \cdots + 32\!\cdots\!56 T 6 + ⋯ + 3 2 ⋯ 5 6
T^6 - 292960392*T^5 + 12081986200671168*T^4 + 1845796427719547352009216*T^3 - 51808418999926909364917423396608*T^2 - 1323042623398496390947178180402607888384*T + 32295697511677345289756922557668309127715987456
61 61 6 1
T 6 + ⋯ − 77 ⋯ 80 T^{6} + \cdots - 77\!\cdots\!80 T 6 + ⋯ − 7 7 ⋯ 8 0
T^6 + 131061714*T^5 - 33240500370748911*T^4 - 6342244998212061373231096*T^3 - 288008208763179860568045840394872*T^2 - 3097796811979549465591265117539097796864*T - 7757818551547585851315056187540933041267556080
67 67 6 7
T 6 + ⋯ + 98 ⋯ 60 T^{6} + \cdots + 98\!\cdots\!60 T 6 + ⋯ + 9 8 ⋯ 6 0
T^6 - 167304000*T^5 - 60558392773581168*T^4 + 12500100633125808265636352*T^3 - 112253294143954330703912988913152*T^2 - 54745794950053918084296052949762256924672*T + 989191969817622319589395810754424180762713128960
71 71 7 1
T 6 + ⋯ − 13 ⋯ 80 T^{6} + \cdots - 13\!\cdots\!80 T 6 + ⋯ − 1 3 ⋯ 8 0
T^6 + 111679536*T^5 - 94228973677767024*T^4 - 8990580156473875023416064*T^3 + 2031148446024310990761702702858240*T^2 + 118295519570066682344335129172898540945408*T - 13483407821029307087753427297957753536066019655680
73 73 7 3
T 6 + ⋯ − 15 ⋯ 08 T^{6} + \cdots - 15\!\cdots\!08 T 6 + ⋯ − 1 5 ⋯ 0 8
T^6 - 31817178*T^5 - 194368549978170015*T^4 + 3875254468060751233721168*T^3 + 10739814449799490612692642084589704*T^2 - 212852864307050409235612032614113253071008*T - 158352653900769225460300130139622616955944673143408
79 79 7 9
T 6 + ⋯ + 31 ⋯ 68 T^{6} + \cdots + 31\!\cdots\!68 T 6 + ⋯ + 3 1 ⋯ 6 8
T^6 + 760320684*T^5 + 16269531680614764*T^4 - 81701536935356480442394768*T^3 - 10745368123905373004888576541800832*T^2 + 1910803749251484207496390191643019654972928*T + 311610427908884361083861087633351655453225019936768
83 83 8 3
T 6 + ⋯ − 19 ⋯ 08 T^{6} + \cdots - 19\!\cdots\!08 T 6 + ⋯ − 1 9 ⋯ 0 8
T^6 - 342835920*T^5 - 179797875667382448*T^4 + 44814571604820075655813248*T^3 + 10904859801501926414699940718934016*T^2 - 1122765366572961814745221009602950928433152*T - 192414913177458736312968718687353645688609225310208
89 89 8 9
T 6 + ⋯ + 18 ⋯ 40 T^{6} + \cdots + 18\!\cdots\!40 T 6 + ⋯ + 1 8 ⋯ 4 0
T^6 - 145362468*T^5 - 689164323088659924*T^4 + 131398453669730898080426016*T^3 + 112418938338786804829379472172759152*T^2 - 29165621764677678067414556956405296123694656*T + 1801274330570613923800195921088316320872487921605440
97 97 9 7
T 6 + ⋯ + 19 ⋯ 28 T^{6} + \cdots + 19\!\cdots\!28 T 6 + ⋯ + 1 9 ⋯ 2 8
T^6 - 714826164*T^5 - 1346308799017434612*T^4 + 182950989802696570348867616*T^3 + 581441890387711054304190564473913456*T^2 + 194484598552494283087263780469614895360252608*T + 19302411319089015223721945344765483625841459252190528
show more
show less