L(s) = 1 | + 14.1·2-s − 81·3-s − 313.·4-s − 1.99e3·5-s − 1.14e3·6-s + 5.78e3·7-s − 1.16e4·8-s + 6.56e3·9-s − 2.80e4·10-s − 5.53e4·11-s + 2.53e4·12-s − 1.79e5·13-s + 8.16e4·14-s + 1.61e5·15-s − 3.74e3·16-s + 4.08e5·17-s + 9.25e4·18-s + 1.30e5·19-s + 6.23e5·20-s − 4.68e5·21-s − 7.81e5·22-s + 2.42e6·23-s + 9.42e5·24-s + 2.01e6·25-s − 2.52e6·26-s − 5.31e5·27-s − 1.81e6·28-s + ⋯ |
L(s) = 1 | + 0.623·2-s − 0.577·3-s − 0.611·4-s − 1.42·5-s − 0.359·6-s + 0.910·7-s − 1.00·8-s + 0.333·9-s − 0.887·10-s − 1.14·11-s + 0.353·12-s − 1.73·13-s + 0.567·14-s + 0.822·15-s − 0.0142·16-s + 1.18·17-s + 0.207·18-s + 0.229·19-s + 0.871·20-s − 0.525·21-s − 0.710·22-s + 1.80·23-s + 0.579·24-s + 1.02·25-s − 1.08·26-s − 0.192·27-s − 0.557·28-s + ⋯ |
Λ(s)=(=(57s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(57s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.9160974362 |
L(21) |
≈ |
0.9160974362 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+81T |
| 19 | 1−1.30e5T |
good | 2 | 1−14.1T+512T2 |
| 5 | 1+1.99e3T+1.95e6T2 |
| 7 | 1−5.78e3T+4.03e7T2 |
| 11 | 1+5.53e4T+2.35e9T2 |
| 13 | 1+1.79e5T+1.06e10T2 |
| 17 | 1−4.08e5T+1.18e11T2 |
| 23 | 1−2.42e6T+1.80e12T2 |
| 29 | 1−7.26e5T+1.45e13T2 |
| 31 | 1−1.22e6T+2.64e13T2 |
| 37 | 1−1.00e7T+1.29e14T2 |
| 41 | 1−4.11e6T+3.27e14T2 |
| 43 | 1+4.14e7T+5.02e14T2 |
| 47 | 1+3.13e7T+1.11e15T2 |
| 53 | 1+1.07e7T+3.29e15T2 |
| 59 | 1−1.65e8T+8.66e15T2 |
| 61 | 1+1.04e7T+1.16e16T2 |
| 67 | 1+6.39e7T+2.72e16T2 |
| 71 | 1+2.64e8T+4.58e16T2 |
| 73 | 1−2.14e8T+5.88e16T2 |
| 79 | 1+2.10e8T+1.19e17T2 |
| 83 | 1−3.55e8T+1.86e17T2 |
| 89 | 1−4.88e8T+3.50e17T2 |
| 97 | 1+5.97e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.05797600200556136503749635467, −12.15137625007035227542932250628, −11.38450510432387763910714125167, −9.948305263429299756979393855776, −8.217038594124342982049119801465, −7.35434734979526962443058828228, −5.16151561385744866670799514639, −4.71403577955576008349055984938, −3.11651361435607347901695697439, −0.55756096172790935185096040134,
0.55756096172790935185096040134, 3.11651361435607347901695697439, 4.71403577955576008349055984938, 5.16151561385744866670799514639, 7.35434734979526962443058828228, 8.217038594124342982049119801465, 9.948305263429299756979393855776, 11.38450510432387763910714125167, 12.15137625007035227542932250628, 13.05797600200556136503749635467