Properties

Label 2-57-1.1-c9-0-1
Degree $2$
Conductor $57$
Sign $1$
Analytic cond. $29.3570$
Root an. cond. $5.41821$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.1·2-s − 81·3-s − 313.·4-s − 1.99e3·5-s − 1.14e3·6-s + 5.78e3·7-s − 1.16e4·8-s + 6.56e3·9-s − 2.80e4·10-s − 5.53e4·11-s + 2.53e4·12-s − 1.79e5·13-s + 8.16e4·14-s + 1.61e5·15-s − 3.74e3·16-s + 4.08e5·17-s + 9.25e4·18-s + 1.30e5·19-s + 6.23e5·20-s − 4.68e5·21-s − 7.81e5·22-s + 2.42e6·23-s + 9.42e5·24-s + 2.01e6·25-s − 2.52e6·26-s − 5.31e5·27-s − 1.81e6·28-s + ⋯
L(s)  = 1  + 0.623·2-s − 0.577·3-s − 0.611·4-s − 1.42·5-s − 0.359·6-s + 0.910·7-s − 1.00·8-s + 0.333·9-s − 0.887·10-s − 1.14·11-s + 0.353·12-s − 1.73·13-s + 0.567·14-s + 0.822·15-s − 0.0142·16-s + 1.18·17-s + 0.207·18-s + 0.229·19-s + 0.871·20-s − 0.525·21-s − 0.710·22-s + 1.80·23-s + 0.579·24-s + 1.02·25-s − 1.08·26-s − 0.192·27-s − 0.557·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57\)    =    \(3 \cdot 19\)
Sign: $1$
Analytic conductor: \(29.3570\)
Root analytic conductor: \(5.41821\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 57,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.9160974362\)
\(L(\frac12)\) \(\approx\) \(0.9160974362\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
19 \( 1 - 1.30e5T \)
good2 \( 1 - 14.1T + 512T^{2} \)
5 \( 1 + 1.99e3T + 1.95e6T^{2} \)
7 \( 1 - 5.78e3T + 4.03e7T^{2} \)
11 \( 1 + 5.53e4T + 2.35e9T^{2} \)
13 \( 1 + 1.79e5T + 1.06e10T^{2} \)
17 \( 1 - 4.08e5T + 1.18e11T^{2} \)
23 \( 1 - 2.42e6T + 1.80e12T^{2} \)
29 \( 1 - 7.26e5T + 1.45e13T^{2} \)
31 \( 1 - 1.22e6T + 2.64e13T^{2} \)
37 \( 1 - 1.00e7T + 1.29e14T^{2} \)
41 \( 1 - 4.11e6T + 3.27e14T^{2} \)
43 \( 1 + 4.14e7T + 5.02e14T^{2} \)
47 \( 1 + 3.13e7T + 1.11e15T^{2} \)
53 \( 1 + 1.07e7T + 3.29e15T^{2} \)
59 \( 1 - 1.65e8T + 8.66e15T^{2} \)
61 \( 1 + 1.04e7T + 1.16e16T^{2} \)
67 \( 1 + 6.39e7T + 2.72e16T^{2} \)
71 \( 1 + 2.64e8T + 4.58e16T^{2} \)
73 \( 1 - 2.14e8T + 5.88e16T^{2} \)
79 \( 1 + 2.10e8T + 1.19e17T^{2} \)
83 \( 1 - 3.55e8T + 1.86e17T^{2} \)
89 \( 1 - 4.88e8T + 3.50e17T^{2} \)
97 \( 1 + 5.97e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05797600200556136503749635467, −12.15137625007035227542932250628, −11.38450510432387763910714125167, −9.948305263429299756979393855776, −8.217038594124342982049119801465, −7.35434734979526962443058828228, −5.16151561385744866670799514639, −4.71403577955576008349055984938, −3.11651361435607347901695697439, −0.55756096172790935185096040134, 0.55756096172790935185096040134, 3.11651361435607347901695697439, 4.71403577955576008349055984938, 5.16151561385744866670799514639, 7.35434734979526962443058828228, 8.217038594124342982049119801465, 9.948305263429299756979393855776, 11.38450510432387763910714125167, 12.15137625007035227542932250628, 13.05797600200556136503749635467

Graph of the $Z$-function along the critical line