Properties

Label 2-57-1.1-c9-0-13
Degree $2$
Conductor $57$
Sign $1$
Analytic cond. $29.3570$
Root an. cond. $5.41821$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 26.5·2-s + 81·3-s + 190.·4-s + 1.29e3·5-s + 2.14e3·6-s − 3.38e3·7-s − 8.52e3·8-s + 6.56e3·9-s + 3.43e4·10-s + 8.29e4·11-s + 1.54e4·12-s + 1.56e5·13-s − 8.97e4·14-s + 1.05e5·15-s − 3.23e5·16-s + 1.22e5·17-s + 1.73e5·18-s − 1.30e5·19-s + 2.47e5·20-s − 2.74e5·21-s + 2.19e6·22-s + 1.72e6·23-s − 6.90e5·24-s − 2.71e5·25-s + 4.13e6·26-s + 5.31e5·27-s − 6.44e5·28-s + ⋯
L(s)  = 1  + 1.17·2-s + 0.577·3-s + 0.372·4-s + 0.928·5-s + 0.676·6-s − 0.532·7-s − 0.735·8-s + 0.333·9-s + 1.08·10-s + 1.70·11-s + 0.214·12-s + 1.51·13-s − 0.624·14-s + 0.535·15-s − 1.23·16-s + 0.355·17-s + 0.390·18-s − 0.229·19-s + 0.345·20-s − 0.307·21-s + 2.00·22-s + 1.28·23-s − 0.424·24-s − 0.138·25-s + 1.77·26-s + 0.192·27-s − 0.198·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57\)    =    \(3 \cdot 19\)
Sign: $1$
Analytic conductor: \(29.3570\)
Root analytic conductor: \(5.41821\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 57,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(5.144575876\)
\(L(\frac12)\) \(\approx\) \(5.144575876\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 81T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 - 26.5T + 512T^{2} \)
5 \( 1 - 1.29e3T + 1.95e6T^{2} \)
7 \( 1 + 3.38e3T + 4.03e7T^{2} \)
11 \( 1 - 8.29e4T + 2.35e9T^{2} \)
13 \( 1 - 1.56e5T + 1.06e10T^{2} \)
17 \( 1 - 1.22e5T + 1.18e11T^{2} \)
23 \( 1 - 1.72e6T + 1.80e12T^{2} \)
29 \( 1 + 1.25e5T + 1.45e13T^{2} \)
31 \( 1 + 2.93e6T + 2.64e13T^{2} \)
37 \( 1 - 6.00e5T + 1.29e14T^{2} \)
41 \( 1 - 2.80e7T + 3.27e14T^{2} \)
43 \( 1 + 1.16e7T + 5.02e14T^{2} \)
47 \( 1 + 8.08e6T + 1.11e15T^{2} \)
53 \( 1 + 2.67e7T + 3.29e15T^{2} \)
59 \( 1 - 9.71e7T + 8.66e15T^{2} \)
61 \( 1 + 1.59e8T + 1.16e16T^{2} \)
67 \( 1 + 2.71e8T + 2.72e16T^{2} \)
71 \( 1 - 3.38e8T + 4.58e16T^{2} \)
73 \( 1 + 7.79e7T + 5.88e16T^{2} \)
79 \( 1 + 5.96e8T + 1.19e17T^{2} \)
83 \( 1 + 7.10e7T + 1.86e17T^{2} \)
89 \( 1 + 1.04e9T + 3.50e17T^{2} \)
97 \( 1 - 3.58e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44147254156790786017096318296, −12.63519953212839916704914774145, −11.25375130056020728367951185724, −9.529606262605644189790777064501, −8.837884647736523485960891868210, −6.64361359829163123598492083350, −5.82301459918773624724813704423, −4.12659123642001577064196468572, −3.13822252147872819712721812270, −1.40469625205078531351679646561, 1.40469625205078531351679646561, 3.13822252147872819712721812270, 4.12659123642001577064196468572, 5.82301459918773624724813704423, 6.64361359829163123598492083350, 8.837884647736523485960891868210, 9.529606262605644189790777064501, 11.25375130056020728367951185724, 12.63519953212839916704914774145, 13.44147254156790786017096318296

Graph of the $Z$-function along the critical line