L(s) = 1 | − 2·3-s + 4·5-s − 2·7-s + 3·9-s − 4·13-s − 8·15-s − 2·17-s + 4·21-s + 8·23-s + 2·25-s − 4·27-s + 4·29-s − 8·35-s − 4·37-s + 8·39-s − 4·41-s − 8·43-s + 12·45-s + 16·47-s + 3·49-s + 4·51-s + 12·53-s + 8·59-s + 20·61-s − 6·63-s − 16·65-s + 8·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.78·5-s − 0.755·7-s + 9-s − 1.10·13-s − 2.06·15-s − 0.485·17-s + 0.872·21-s + 1.66·23-s + 2/5·25-s − 0.769·27-s + 0.742·29-s − 1.35·35-s − 0.657·37-s + 1.28·39-s − 0.624·41-s − 1.21·43-s + 1.78·45-s + 2.33·47-s + 3/7·49-s + 0.560·51-s + 1.64·53-s + 1.04·59-s + 2.56·61-s − 0.755·63-s − 1.98·65-s + 0.977·67-s + ⋯ |
Λ(s)=(=(32626944s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(32626944s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
32626944
= 28⋅32⋅72⋅172
|
Sign: |
1
|
Analytic conductor: |
2080.32 |
Root analytic conductor: |
6.75355 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 32626944, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.412378217 |
L(21) |
≈ |
2.412378217 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 7 | C1 | (1+T)2 |
| 17 | C1 | (1+T)2 |
good | 5 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | D4 | 1+4T+6T2+4pT3+p2T4 |
| 19 | C22 | 1+14T2+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 31 | C22 | 1−34T2+p2T4 |
| 37 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | D4 | 1−8T+110T2−8pT3+p2T4 |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 71 | D4 | 1+8T+62T2+8pT3+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+62T2+p2T4 |
| 83 | D4 | 1−24T+286T2−24pT3+p2T4 |
| 89 | D4 | 1+4T+86T2+4pT3+p2T4 |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.401623292797585664846043336208, −7.88410839683485929838060750231, −7.30355865638477833800684086370, −7.03678399563654217145024819803, −6.83634885094482850788032048503, −6.51738791382209598532333492140, −6.20226460058585050195656426300, −5.65248135210590006836623387310, −5.37695213827609845087914980861, −5.36781726853962615356005390727, −4.84468347416322590841025997214, −4.45085121858457059840735139381, −3.81614883294576252887817220802, −3.61180129386281851974508791446, −2.74040109881289772290551498915, −2.57326782856774654495500389038, −2.06218888505628783581297165438, −1.69942441547186803777852439627, −0.864076720247538904497898252984, −0.54188328923494244407794846359,
0.54188328923494244407794846359, 0.864076720247538904497898252984, 1.69942441547186803777852439627, 2.06218888505628783581297165438, 2.57326782856774654495500389038, 2.74040109881289772290551498915, 3.61180129386281851974508791446, 3.81614883294576252887817220802, 4.45085121858457059840735139381, 4.84468347416322590841025997214, 5.36781726853962615356005390727, 5.37695213827609845087914980861, 5.65248135210590006836623387310, 6.20226460058585050195656426300, 6.51738791382209598532333492140, 6.83634885094482850788032048503, 7.03678399563654217145024819803, 7.30355865638477833800684086370, 7.88410839683485929838060750231, 8.401623292797585664846043336208