Properties

Label 5712.2.a.bm
Level $5712$
Weight $2$
Character orbit 5712.a
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 714)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + 2 q^{5} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + 2 q^{5} - q^{7} + q^{9} - \beta q^{11} + ( - \beta - 2) q^{13} - 2 q^{15} - q^{17} + \beta q^{19} + q^{21} + 4 q^{23} - q^{25} - q^{27} + ( - \beta + 2) q^{29} - 2 \beta q^{31} + \beta q^{33} - 2 q^{35} + (\beta - 2) q^{37} + (\beta + 2) q^{39} - 2 q^{41} - 4 q^{43} + 2 q^{45} + 8 q^{47} + q^{49} + q^{51} + 6 q^{53} - 2 \beta q^{55} - \beta q^{57} + (\beta + 4) q^{59} + 10 q^{61} - q^{63} + ( - 2 \beta - 4) q^{65} + (2 \beta + 4) q^{67} - 4 q^{69} + ( - 2 \beta - 4) q^{71} - 2 q^{73} + q^{75} + \beta q^{77} + 2 \beta q^{79} + q^{81} + (\beta + 12) q^{83} - 2 q^{85} + (\beta - 2) q^{87} + (2 \beta - 2) q^{89} + (\beta + 2) q^{91} + 2 \beta q^{93} + 2 \beta q^{95} + 6 q^{97} - \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{5} - 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 4 q^{5} - 2 q^{7} + 2 q^{9} - 4 q^{13} - 4 q^{15} - 2 q^{17} + 2 q^{21} + 8 q^{23} - 2 q^{25} - 2 q^{27} + 4 q^{29} - 4 q^{35} - 4 q^{37} + 4 q^{39} - 4 q^{41} - 8 q^{43} + 4 q^{45} + 16 q^{47} + 2 q^{49} + 2 q^{51} + 12 q^{53} + 8 q^{59} + 20 q^{61} - 2 q^{63} - 8 q^{65} + 8 q^{67} - 8 q^{69} - 8 q^{71} - 4 q^{73} + 2 q^{75} + 2 q^{81} + 24 q^{83} - 4 q^{85} - 4 q^{87} - 4 q^{89} + 4 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.44949
−2.44949
0 −1.00000 0 2.00000 0 −1.00000 0 1.00000 0
1.2 0 −1.00000 0 2.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.bm 2
4.b odd 2 1 714.2.a.m 2
12.b even 2 1 2142.2.a.v 2
28.d even 2 1 4998.2.a.bw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
714.2.a.m 2 4.b odd 2 1
2142.2.a.v 2 12.b even 2 1
4998.2.a.bw 2 28.d even 2 1
5712.2.a.bm 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 24 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 20 \) Copy content Toggle raw display
\( T_{19}^{2} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 2)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 24 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 20 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 24 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 20 \) Copy content Toggle raw display
$31$ \( T^{2} - 96 \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 20 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 8 \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 80 \) Copy content Toggle raw display
$71$ \( T^{2} + 8T - 80 \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 96 \) Copy content Toggle raw display
$83$ \( T^{2} - 24T + 120 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 92 \) Copy content Toggle raw display
$97$ \( (T - 6)^{2} \) Copy content Toggle raw display
show more
show less