Properties

Label 2-5712-1.1-c1-0-75
Degree $2$
Conductor $5712$
Sign $-1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 1.19·5-s − 7-s + 9-s − 1.32·11-s + 1.19·13-s − 1.19·15-s − 17-s + 2.46·19-s − 21-s + 7.60·23-s − 3.57·25-s + 27-s − 5.27·29-s − 5.77·31-s − 1.32·33-s + 1.19·35-s − 0.130·37-s + 1.19·39-s − 10.7·41-s + 1.22·43-s − 1.19·45-s − 5.77·47-s + 49-s − 51-s + 11.7·53-s + 1.57·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.533·5-s − 0.377·7-s + 0.333·9-s − 0.398·11-s + 0.330·13-s − 0.307·15-s − 0.242·17-s + 0.565·19-s − 0.218·21-s + 1.58·23-s − 0.715·25-s + 0.192·27-s − 0.979·29-s − 1.03·31-s − 0.230·33-s + 0.201·35-s − 0.0213·37-s + 0.190·39-s − 1.67·41-s + 0.186·43-s − 0.177·45-s − 0.841·47-s + 0.142·49-s − 0.140·51-s + 1.61·53-s + 0.212·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 1.19T + 5T^{2} \)
11 \( 1 + 1.32T + 11T^{2} \)
13 \( 1 - 1.19T + 13T^{2} \)
19 \( 1 - 2.46T + 19T^{2} \)
23 \( 1 - 7.60T + 23T^{2} \)
29 \( 1 + 5.27T + 29T^{2} \)
31 \( 1 + 5.77T + 31T^{2} \)
37 \( 1 + 0.130T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 - 1.22T + 43T^{2} \)
47 \( 1 + 5.77T + 47T^{2} \)
53 \( 1 - 11.7T + 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 + 2.37T + 61T^{2} \)
67 \( 1 + 0.0987T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 - 7.91T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 + 0.0987T + 83T^{2} \)
89 \( 1 + 8.38T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68401636255714526684987768137, −7.23886328203842606078216758444, −6.50082888628619179844688036152, −5.50695682596439677162198862095, −4.87818340239453460298254350626, −3.79415477695837148687793533287, −3.38817027220226098726354608736, −2.45695080934908810246302629940, −1.39028717972315563316528764324, 0, 1.39028717972315563316528764324, 2.45695080934908810246302629940, 3.38817027220226098726354608736, 3.79415477695837148687793533287, 4.87818340239453460298254350626, 5.50695682596439677162198862095, 6.50082888628619179844688036152, 7.23886328203842606078216758444, 7.68401636255714526684987768137

Graph of the $Z$-function along the critical line