Properties

Label 5712.2.a.bx
Level $5712$
Weight $2$
Character orbit 5712.a
Self dual yes
Analytic conductor $45.611$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_{3} q^{5} - q^{7} + q^{9} + \beta_1 q^{11} - \beta_{3} q^{13} + \beta_{3} q^{15} - q^{17} + ( - \beta_{3} + \beta_{2} - \beta_1 - 3) q^{19} - q^{21} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 2) q^{23}+ \cdots + \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 4 q^{7} + 4 q^{9} - 2 q^{11} + 2 q^{13} - 2 q^{15} - 4 q^{17} - 10 q^{19} - 4 q^{21} - 6 q^{23} + 10 q^{25} + 4 q^{27} - 4 q^{29} + 4 q^{31} - 2 q^{33} + 2 q^{35} + 2 q^{39} - 18 q^{41}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_{2} + 4\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.22219
−1.63640
3.06644
−0.652223
0 1.00000 0 −4.05062 0 −1.00000 0 1.00000 0
1.2 0 1.00000 0 −1.19202 0 −1.00000 0 1.00000 0
1.3 0 1.00000 0 −0.238009 0 −1.00000 0 1.00000 0
1.4 0 1.00000 0 3.48065 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.bx 4
4.b odd 2 1 357.2.a.h 4
12.b even 2 1 1071.2.a.j 4
20.d odd 2 1 8925.2.a.bs 4
28.d even 2 1 2499.2.a.z 4
68.d odd 2 1 6069.2.a.s 4
84.h odd 2 1 7497.2.a.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.a.h 4 4.b odd 2 1
1071.2.a.j 4 12.b even 2 1
2499.2.a.z 4 28.d even 2 1
5712.2.a.bx 4 1.a even 1 1 trivial
6069.2.a.s 4 68.d odd 2 1
7497.2.a.be 4 84.h odd 2 1
8925.2.a.bs 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\):

\( T_{5}^{4} + 2T_{5}^{3} - 13T_{5}^{2} - 20T_{5} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 23T_{11}^{2} - 80T_{11} - 64 \) Copy content Toggle raw display
\( T_{13}^{4} - 2T_{13}^{3} - 13T_{13}^{2} + 20T_{13} - 4 \) Copy content Toggle raw display
\( T_{19}^{4} + 10T_{19}^{3} + 7T_{19}^{2} - 80T_{19} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 10 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 272 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 2176 \) Copy content Toggle raw display
$37$ \( T^{4} - 42 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots - 2788 \) Copy content Toggle raw display
$43$ \( T^{4} + 26 T^{3} + \cdots - 752 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 2176 \) Copy content Toggle raw display
$53$ \( T^{4} - 20 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots + 2848 \) Copy content Toggle raw display
$61$ \( T^{4} + 4 T^{3} + \cdots - 968 \) Copy content Toggle raw display
$67$ \( T^{4} + 28 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( T^{4} + 4 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots - 5648 \) Copy content Toggle raw display
$79$ \( T^{4} - 8 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( T^{4} + 28 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 28 T^{3} + \cdots - 736 \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
show more
show less