Properties

Label 5712.2.a.bx
Level 57125712
Weight 22
Character orbit 5712.a
Self dual yes
Analytic conductor 45.61145.611
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5712=243717 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 45.610549634645.6105496346
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 357)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3+β3q5q7+q9+β1q11β3q13+β3q15q17+(β3+β2β13)q19q21+(2β3+2β2+2)q23++β1q99+O(q100) q + q^{3} + \beta_{3} q^{5} - q^{7} + q^{9} + \beta_1 q^{11} - \beta_{3} q^{13} + \beta_{3} q^{15} - q^{17} + ( - \beta_{3} + \beta_{2} - \beta_1 - 3) q^{19} - q^{21} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 2) q^{23}+ \cdots + \beta_1 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q32q54q7+4q92q11+2q132q154q1710q194q216q23+10q25+4q274q29+4q312q33+2q35+2q3918q41+2q99+O(q100) 4 q + 4 q^{3} - 2 q^{5} - 4 q^{7} + 4 q^{9} - 2 q^{11} + 2 q^{13} - 2 q^{15} - 4 q^{17} - 10 q^{19} - 4 q^{21} - 6 q^{23} + 10 q^{25} + 4 q^{27} - 4 q^{29} + 4 q^{31} - 2 q^{33} + 2 q^{35} + 2 q^{39} - 18 q^{41}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β2\beta_{2}== ν22ν3 \nu^{2} - 2\nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν32ν24ν+2 \nu^{3} - 2\nu^{2} - 4\nu + 2 Copy content Toggle raw display
ν\nu== (β2+β1+1)/2 ( -\beta_{2} + \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β1+4 \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== β32β2+4β1+8 \beta_{3} - 2\beta_{2} + 4\beta _1 + 8 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.22219
−1.63640
3.06644
−0.652223
0 1.00000 0 −4.05062 0 −1.00000 0 1.00000 0
1.2 0 1.00000 0 −1.19202 0 −1.00000 0 1.00000 0
1.3 0 1.00000 0 −0.238009 0 −1.00000 0 1.00000 0
1.4 0 1.00000 0 3.48065 0 −1.00000 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 +1 +1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.bx 4
4.b odd 2 1 357.2.a.h 4
12.b even 2 1 1071.2.a.j 4
20.d odd 2 1 8925.2.a.bs 4
28.d even 2 1 2499.2.a.z 4
68.d odd 2 1 6069.2.a.s 4
84.h odd 2 1 7497.2.a.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.a.h 4 4.b odd 2 1
1071.2.a.j 4 12.b even 2 1
2499.2.a.z 4 28.d even 2 1
5712.2.a.bx 4 1.a even 1 1 trivial
6069.2.a.s 4 68.d odd 2 1
7497.2.a.be 4 84.h odd 2 1
8925.2.a.bs 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5712))S_{2}^{\mathrm{new}}(\Gamma_0(5712)):

T54+2T5313T5220T54 T_{5}^{4} + 2T_{5}^{3} - 13T_{5}^{2} - 20T_{5} - 4 Copy content Toggle raw display
T114+2T11323T11280T1164 T_{11}^{4} + 2T_{11}^{3} - 23T_{11}^{2} - 80T_{11} - 64 Copy content Toggle raw display
T1342T13313T132+20T134 T_{13}^{4} - 2T_{13}^{3} - 13T_{13}^{2} + 20T_{13} - 4 Copy content Toggle raw display
T194+10T193+7T19280T1932 T_{19}^{4} + 10T_{19}^{3} + 7T_{19}^{2} - 80T_{19} - 32 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T1)4 (T - 1)^{4} Copy content Toggle raw display
55 T4+2T3+4 T^{4} + 2 T^{3} + \cdots - 4 Copy content Toggle raw display
77 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1111 T4+2T3+64 T^{4} + 2 T^{3} + \cdots - 64 Copy content Toggle raw display
1313 T42T3+4 T^{4} - 2 T^{3} + \cdots - 4 Copy content Toggle raw display
1717 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1919 T4+10T3+32 T^{4} + 10 T^{3} + \cdots - 32 Copy content Toggle raw display
2323 T4+6T3++272 T^{4} + 6 T^{3} + \cdots + 272 Copy content Toggle raw display
2929 T4+4T3++32 T^{4} + 4 T^{3} + \cdots + 32 Copy content Toggle raw display
3131 T44T3++2176 T^{4} - 4 T^{3} + \cdots + 2176 Copy content Toggle raw display
3737 T442T2++8 T^{4} - 42 T^{2} + \cdots + 8 Copy content Toggle raw display
4141 T4+18T3+2788 T^{4} + 18 T^{3} + \cdots - 2788 Copy content Toggle raw display
4343 T4+26T3+752 T^{4} + 26 T^{3} + \cdots - 752 Copy content Toggle raw display
4747 T44T3++2176 T^{4} - 4 T^{3} + \cdots + 2176 Copy content Toggle raw display
5353 T420T3++184 T^{4} - 20 T^{3} + \cdots + 184 Copy content Toggle raw display
5959 T4+4T3++2848 T^{4} + 4 T^{3} + \cdots + 2848 Copy content Toggle raw display
6161 T4+4T3+968 T^{4} + 4 T^{3} + \cdots - 968 Copy content Toggle raw display
6767 T4+28T3++64 T^{4} + 28 T^{3} + \cdots + 64 Copy content Toggle raw display
7171 T4+4T3++3136 T^{4} + 4 T^{3} + \cdots + 3136 Copy content Toggle raw display
7373 T48T3+5648 T^{4} - 8 T^{3} + \cdots - 5648 Copy content Toggle raw display
7979 T48T3++256 T^{4} - 8 T^{3} + \cdots + 256 Copy content Toggle raw display
8383 T4+28T3++64 T^{4} + 28 T^{3} + \cdots + 64 Copy content Toggle raw display
8989 T4+28T3+736 T^{4} + 28 T^{3} + \cdots - 736 Copy content Toggle raw display
9797 T44T3++3136 T^{4} - 4 T^{3} + \cdots + 3136 Copy content Toggle raw display
show more
show less