L(s) = 1 | − 3.84·2-s − 4.08·3-s + 6.74·4-s + 15.7·6-s + 27.0·7-s + 4.81·8-s − 10.2·9-s − 14.4·11-s − 27.5·12-s − 9.89·13-s − 104.·14-s − 72.4·16-s − 16.5·17-s + 39.4·18-s − 74.5·19-s − 110.·21-s + 55.4·22-s + 23·23-s − 19.6·24-s + 37.9·26-s + 152.·27-s + 182.·28-s + 202.·29-s − 8.09·31-s + 239.·32-s + 59.0·33-s + 63.5·34-s + ⋯ |
L(s) = 1 | − 1.35·2-s − 0.786·3-s + 0.843·4-s + 1.06·6-s + 1.46·7-s + 0.212·8-s − 0.380·9-s − 0.395·11-s − 0.663·12-s − 0.211·13-s − 1.98·14-s − 1.13·16-s − 0.236·17-s + 0.517·18-s − 0.900·19-s − 1.15·21-s + 0.537·22-s + 0.208·23-s − 0.167·24-s + 0.286·26-s + 1.08·27-s + 1.23·28-s + 1.29·29-s − 0.0468·31-s + 1.32·32-s + 0.311·33-s + 0.320·34-s + ⋯ |
Λ(s)=(=(575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1−23T |
good | 2 | 1+3.84T+8T2 |
| 3 | 1+4.08T+27T2 |
| 7 | 1−27.0T+343T2 |
| 11 | 1+14.4T+1.33e3T2 |
| 13 | 1+9.89T+2.19e3T2 |
| 17 | 1+16.5T+4.91e3T2 |
| 19 | 1+74.5T+6.85e3T2 |
| 29 | 1−202.T+2.43e4T2 |
| 31 | 1+8.09T+2.97e4T2 |
| 37 | 1−210.T+5.06e4T2 |
| 41 | 1+320.T+6.89e4T2 |
| 43 | 1+366.T+7.95e4T2 |
| 47 | 1−225.T+1.03e5T2 |
| 53 | 1−295.T+1.48e5T2 |
| 59 | 1−428.T+2.05e5T2 |
| 61 | 1+200.T+2.26e5T2 |
| 67 | 1−130.T+3.00e5T2 |
| 71 | 1−287.T+3.57e5T2 |
| 73 | 1+1.22e3T+3.89e5T2 |
| 79 | 1+292.T+4.93e5T2 |
| 83 | 1+780.T+5.71e5T2 |
| 89 | 1+114.T+7.04e5T2 |
| 97 | 1−1.47e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09269814351706533028186108303, −8.677707700834454211708229036292, −8.414215686806282994321219068698, −7.43904142022387227545624874803, −6.44237908365802348909958778674, −5.20248183891237152239623898363, −4.49240669810168794457400657672, −2.41144698408741710232158306295, −1.20984451329184593308914980226, 0,
1.20984451329184593308914980226, 2.41144698408741710232158306295, 4.49240669810168794457400657672, 5.20248183891237152239623898363, 6.44237908365802348909958778674, 7.43904142022387227545624874803, 8.414215686806282994321219068698, 8.677707700834454211708229036292, 10.09269814351706533028186108303