Properties

Label 575.4.a.l
Level $575$
Weight $4$
Character orbit 575.a
Self dual yes
Analytic conductor $33.926$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(1,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9260982533\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 37x^{5} + 123x^{4} + 304x^{3} - 1196x^{2} + 264x + 864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{5} + \beta_1 - 1) q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots - 5) q^{6} + ( - \beta_{6} - \beta_{5}) q^{7} + ( - 2 \beta_{5} - 2 \beta_{4} + \cdots + 10) q^{8}+ \cdots + (23 \beta_{6} - 25 \beta_{5} + \cdots - 288) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{2} - q^{3} + 27 q^{4} - 41 q^{6} - q^{7} + 57 q^{8} + 10 q^{9} - 52 q^{11} - 65 q^{12} - 45 q^{13} - 42 q^{14} - 85 q^{16} - 85 q^{17} - 18 q^{18} - 10 q^{19} - 202 q^{21} + 71 q^{22} + 161 q^{23}+ \cdots - 2143 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 37x^{5} + 123x^{4} + 304x^{3} - 1196x^{2} + 264x + 864 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 31\nu^{4} + 18\nu^{3} + 208\nu^{2} - 236\nu + 48 ) / 24 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 37\nu^{4} - 6\nu^{3} - 346\nu^{2} + 68\nu + 432 ) / 24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 37\nu^{4} + 18\nu^{3} + 346\nu^{2} - 296\nu - 312 ) / 24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 3\nu^{5} - 31\nu^{4} - 75\nu^{3} + 250\nu^{2} + 388\nu - 384 ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + 2\beta_{4} + 19\beta _1 - 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -4\beta_{5} + 4\beta_{3} + 23\beta_{2} - 33\beta _1 + 216 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{6} + 62\beta_{5} + 62\beta_{4} - 8\beta_{3} - 14\beta_{2} + 395\beta _1 - 334 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -160\beta_{5} - 36\beta_{4} + 148\beta_{3} + 505\beta_{2} - 921\beta _1 + 4332 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.39200
3.84004
2.80947
1.37904
−0.711047
−3.74805
−4.96146
−4.39200 3.27927 11.2896 0 −14.4025 −13.7978 −14.4481 −16.2464 0
1.2 −3.84004 −4.08871 6.74592 0 15.7008 27.0878 4.81574 −10.2825 0
1.3 −2.80947 9.02517 −0.106856 0 −25.3560 −11.4533 22.7760 54.4537 0
1.4 −1.37904 −5.53432 −6.09824 0 7.63206 −8.23397 19.4421 3.62871 0
1.5 0.711047 0.689108 −7.49441 0 0.489988 19.0526 −11.0173 −26.5251 0
1.6 3.74805 2.78570 6.04789 0 10.4409 −9.96305 −7.31660 −19.2399 0
1.7 4.96146 −7.15622 16.6161 0 −35.5053 −3.69237 42.7482 24.2114 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 575.4.a.l 7
5.b even 2 1 575.4.a.m yes 7
5.c odd 4 2 575.4.b.j 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
575.4.a.l 7 1.a even 1 1 trivial
575.4.a.m yes 7 5.b even 2 1
575.4.b.j 14 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(575))\):

\( T_{2}^{7} + 3T_{2}^{6} - 37T_{2}^{5} - 123T_{2}^{4} + 304T_{2}^{3} + 1196T_{2}^{2} + 264T_{2} - 864 \) Copy content Toggle raw display
\( T_{3}^{7} + T_{3}^{6} - 99T_{3}^{5} - 162T_{3}^{4} + 2175T_{3}^{3} + 1410T_{3}^{2} - 15280T_{3} + 9200 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 3 T^{6} + \cdots - 864 \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} + \cdots + 9200 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + T^{6} + \cdots + 24704352 \) Copy content Toggle raw display
$11$ \( T^{7} + 52 T^{6} + \cdots - 935052376 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 14970390426 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 864344916480 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 451105530840 \) Copy content Toggle raw display
$23$ \( (T - 23)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 323393919122280 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 38841367049280 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots - 774288681572352 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 15\!\cdots\!85 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 13\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 54\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 771684969846528 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots - 67\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 43\!\cdots\!60 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 11\!\cdots\!37 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 11\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots + 19\!\cdots\!68 \) Copy content Toggle raw display
show more
show less