L(s) = 1 | + 0.711·2-s + 0.689·3-s − 7.49·4-s + 0.489·6-s + 19.0·7-s − 11.0·8-s − 26.5·9-s + 50.7·11-s − 5.16·12-s − 45.4·13-s + 13.5·14-s + 52.1·16-s − 53.0·17-s − 18.8·18-s + 58.8·19-s + 13.1·21-s + 36.0·22-s + 23·23-s − 7.59·24-s − 32.3·26-s − 36.8·27-s − 142.·28-s − 70.7·29-s − 286.·31-s + 125.·32-s + 34.9·33-s − 37.7·34-s + ⋯ |
L(s) = 1 | + 0.251·2-s + 0.132·3-s − 0.936·4-s + 0.0333·6-s + 1.02·7-s − 0.486·8-s − 0.982·9-s + 1.38·11-s − 0.124·12-s − 0.969·13-s + 0.258·14-s + 0.814·16-s − 0.756·17-s − 0.246·18-s + 0.710·19-s + 0.136·21-s + 0.349·22-s + 0.208·23-s − 0.0645·24-s − 0.243·26-s − 0.262·27-s − 0.963·28-s − 0.452·29-s − 1.66·31-s + 0.691·32-s + 0.184·33-s − 0.190·34-s + ⋯ |
Λ(s)=(=(575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1−23T |
good | 2 | 1−0.711T+8T2 |
| 3 | 1−0.689T+27T2 |
| 7 | 1−19.0T+343T2 |
| 11 | 1−50.7T+1.33e3T2 |
| 13 | 1+45.4T+2.19e3T2 |
| 17 | 1+53.0T+4.91e3T2 |
| 19 | 1−58.8T+6.85e3T2 |
| 29 | 1+70.7T+2.43e4T2 |
| 31 | 1+286.T+2.97e4T2 |
| 37 | 1−175.T+5.06e4T2 |
| 41 | 1+95.0T+6.89e4T2 |
| 43 | 1+148.T+7.95e4T2 |
| 47 | 1+23.5T+1.03e5T2 |
| 53 | 1+379.T+1.48e5T2 |
| 59 | 1+741.T+2.05e5T2 |
| 61 | 1−5.17T+2.26e5T2 |
| 67 | 1+974.T+3.00e5T2 |
| 71 | 1+336.T+3.57e5T2 |
| 73 | 1−317.T+3.89e5T2 |
| 79 | 1+577.T+4.93e5T2 |
| 83 | 1−225.T+5.71e5T2 |
| 89 | 1+1.14e3T+7.04e5T2 |
| 97 | 1−147.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.532172738980418731730914842952, −9.094046840498418782973355597197, −8.249014966735985458394064996305, −7.30214661682020467055729248416, −5.99568440001096561679377144935, −5.07366911280769106181196934714, −4.28909766514303131114496830879, −3.15415010887968857558354501397, −1.60672010936864913147097629751, 0,
1.60672010936864913147097629751, 3.15415010887968857558354501397, 4.28909766514303131114496830879, 5.07366911280769106181196934714, 5.99568440001096561679377144935, 7.30214661682020467055729248416, 8.249014966735985458394064996305, 9.094046840498418782973355597197, 9.532172738980418731730914842952