L(s) = 1 | − 120·17-s + 76·25-s + 24·41-s − 4·49-s − 344·73-s − 312·89-s + 248·97-s + 24·113-s − 100·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 580·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 7.05·17-s + 3.03·25-s + 0.585·41-s − 0.0816·49-s − 4.71·73-s − 3.50·89-s + 2.55·97-s + 0.212·113-s − 0.826·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.43·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((224⋅38)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
60677.8 |
Root analytic conductor: |
3.96167 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.2935283245 |
L(21) |
≈ |
0.2935283245 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−38T2+p4T4)2 |
| 7 | C22 | (1+2T2+p4T4)2 |
| 11 | C22 | (1+50T2+p4T4)2 |
| 13 | C22 | (1−290T2+p4T4)2 |
| 17 | C2 | (1+30T+p2T2)4 |
| 19 | C22 | (1+674T2+p4T4)2 |
| 23 | C22 | (1−914T2+p4T4)2 |
| 29 | C22 | (1+1018T2+p4T4)2 |
| 31 | C22 | (1−1726T2+p4T4)2 |
| 37 | C22 | (1+334T2+p4T4)2 |
| 41 | C2 | (1−6T+p2T2)4 |
| 43 | C22 | (1−190T2+p4T4)2 |
| 47 | C22 | (1+2638T2+p4T4)2 |
| 53 | C22 | (1−5318T2+p4T4)2 |
| 59 | C22 | (1+3074T2+p4T4)2 |
| 61 | C2 | (1−74T+p2T2)2(1+74T+p2T2)2 |
| 67 | C22 | (1+6626T2+p4T4)2 |
| 71 | C22 | (1−6482T2+p4T4)2 |
| 73 | C2 | (1+86T+p2T2)4 |
| 79 | C22 | (1−11038T2+p4T4)2 |
| 83 | C22 | (1+13586T2+p4T4)2 |
| 89 | C2 | (1+78T+p2T2)4 |
| 97 | C2 | (1−62T+p2T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.38893709189746923848017209327, −7.30303014165155537767067964276, −6.86905918201796305504872498717, −6.86218345965042272201075070055, −6.60871020463681693573581388024, −6.35553075534168364422087835387, −6.24655490795604291462452845787, −5.96676204210569846680043446906, −5.58678463337727409717688986445, −5.07651414132702022736546687496, −5.03844751664607348139678014881, −4.53906099579572994552045647724, −4.52484715522237396919404583613, −4.31880862200366076178991506554, −4.24792991917049444724925928247, −3.81276735275334532379363049809, −3.25247017618835364966359363179, −2.86419562919665502986117135091, −2.69489393388727772336867656866, −2.33530356157797945870074939431, −2.27809206313197820495624340122, −1.62186718045250429957183128699, −1.47183051499872596619843961828, −0.61283480987577486908157251457, −0.12566935799982811304978515457,
0.12566935799982811304978515457, 0.61283480987577486908157251457, 1.47183051499872596619843961828, 1.62186718045250429957183128699, 2.27809206313197820495624340122, 2.33530356157797945870074939431, 2.69489393388727772336867656866, 2.86419562919665502986117135091, 3.25247017618835364966359363179, 3.81276735275334532379363049809, 4.24792991917049444724925928247, 4.31880862200366076178991506554, 4.52484715522237396919404583613, 4.53906099579572994552045647724, 5.03844751664607348139678014881, 5.07651414132702022736546687496, 5.58678463337727409717688986445, 5.96676204210569846680043446906, 6.24655490795604291462452845787, 6.35553075534168364422087835387, 6.60871020463681693573581388024, 6.86218345965042272201075070055, 6.86905918201796305504872498717, 7.30303014165155537767067964276, 7.38893709189746923848017209327