Properties

Label 576.3.b.a
Level 576576
Weight 33
Character orbit 576.b
Analytic conductor 15.69515.695
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,3,Mod(415,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.415");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 576.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.694863227215.6948632272
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q5+5β1q72β3q112β2q1330q17+β3q196β1q23+13q2515β2q29+7β1q315β3q35++62q97+O(q100) q + \beta_{2} q^{5} + 5 \beta_1 q^{7} - 2 \beta_{3} q^{11} - 2 \beta_{2} q^{13} - 30 q^{17} + \beta_{3} q^{19} - 6 \beta_1 q^{23} + 13 q^{25} - 15 \beta_{2} q^{29} + 7 \beta_1 q^{31} - 5 \beta_{3} q^{35}+ \cdots + 62 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q120q17+52q25+24q41204q49+96q65344q73312q89+248q97+O(q100) 4 q - 120 q^{17} + 52 q^{25} + 24 q^{41} - 204 q^{49} + 96 q^{65} - 344 q^{73} - 312 q^{89} + 248 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ123 2\zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 4ζ1222 4\zeta_{12}^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== 4ζ123+8ζ12 -4\zeta_{12}^{3} + 8\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+2β1)/8 ( \beta_{3} + 2\beta_1 ) / 8 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+2)/4 ( \beta_{2} + 2 ) / 4 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
415.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 3.46410i 0 10.0000i 0 0 0
415.2 0 0 0 3.46410i 0 10.0000i 0 0 0
415.3 0 0 0 3.46410i 0 10.0000i 0 0 0
415.4 0 0 0 3.46410i 0 10.0000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.3.b.a 4
3.b odd 2 1 192.3.b.b 4
4.b odd 2 1 inner 576.3.b.a 4
8.b even 2 1 inner 576.3.b.a 4
8.d odd 2 1 inner 576.3.b.a 4
12.b even 2 1 192.3.b.b 4
16.e even 4 2 2304.3.g.q 4
16.f odd 4 2 2304.3.g.q 4
24.f even 2 1 192.3.b.b 4
24.h odd 2 1 192.3.b.b 4
48.i odd 4 2 768.3.g.f 4
48.k even 4 2 768.3.g.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.3.b.b 4 3.b odd 2 1
192.3.b.b 4 12.b even 2 1
192.3.b.b 4 24.f even 2 1
192.3.b.b 4 24.h odd 2 1
576.3.b.a 4 1.a even 1 1 trivial
576.3.b.a 4 4.b odd 2 1 inner
576.3.b.a 4 8.b even 2 1 inner
576.3.b.a 4 8.d odd 2 1 inner
768.3.g.f 4 48.i odd 4 2
768.3.g.f 4 48.k even 4 2
2304.3.g.q 4 16.e even 4 2
2304.3.g.q 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(576,[χ])S_{3}^{\mathrm{new}}(576, [\chi]):

T52+12 T_{5}^{2} + 12 Copy content Toggle raw display
T72+100 T_{7}^{2} + 100 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
77 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
1111 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
1313 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
1717 (T+30)4 (T + 30)^{4} Copy content Toggle raw display
1919 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
2323 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
2929 (T2+2700)2 (T^{2} + 2700)^{2} Copy content Toggle raw display
3131 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
3737 (T2+3072)2 (T^{2} + 3072)^{2} Copy content Toggle raw display
4141 (T6)4 (T - 6)^{4} Copy content Toggle raw display
4343 (T23888)2 (T^{2} - 3888)^{2} Copy content Toggle raw display
4747 (T2+7056)2 (T^{2} + 7056)^{2} Copy content Toggle raw display
5353 (T2+300)2 (T^{2} + 300)^{2} Copy content Toggle raw display
5959 (T23888)2 (T^{2} - 3888)^{2} Copy content Toggle raw display
6161 (T2+9408)2 (T^{2} + 9408)^{2} Copy content Toggle raw display
6767 (T22352)2 (T^{2} - 2352)^{2} Copy content Toggle raw display
7171 (T2+3600)2 (T^{2} + 3600)^{2} Copy content Toggle raw display
7373 (T+86)4 (T + 86)^{4} Copy content Toggle raw display
7979 (T2+1444)2 (T^{2} + 1444)^{2} Copy content Toggle raw display
8383 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
8989 (T+78)4 (T + 78)^{4} Copy content Toggle raw display
9797 (T62)4 (T - 62)^{4} Copy content Toggle raw display
show more
show less