L(s) = 1 | − 3.46i·5-s + 10i·7-s + 13.8·11-s + 6.92i·13-s − 30·17-s − 6.92·19-s − 12i·23-s + 13.0·25-s + 51.9i·29-s + 14i·31-s + 34.6·35-s + 55.4i·37-s + 6·41-s + 62.3·43-s + 84i·47-s + ⋯ |
L(s) = 1 | − 0.692i·5-s + 1.42i·7-s + 1.25·11-s + 0.532i·13-s − 1.76·17-s − 0.364·19-s − 0.521i·23-s + 0.520·25-s + 1.79i·29-s + 0.451i·31-s + 0.989·35-s + 1.49i·37-s + 0.146·41-s + 1.45·43-s + 1.78i·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(0.258−0.965i)Λ(3−s)
Λ(s)=(=(576s/2ΓC(s+1)L(s)(0.258−0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
0.258−0.965i
|
Analytic conductor: |
15.6948 |
Root analytic conductor: |
3.96167 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :1), 0.258−0.965i)
|
Particular Values
L(23) |
≈ |
1.541720946 |
L(21) |
≈ |
1.541720946 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+3.46iT−25T2 |
| 7 | 1−10iT−49T2 |
| 11 | 1−13.8T+121T2 |
| 13 | 1−6.92iT−169T2 |
| 17 | 1+30T+289T2 |
| 19 | 1+6.92T+361T2 |
| 23 | 1+12iT−529T2 |
| 29 | 1−51.9iT−841T2 |
| 31 | 1−14iT−961T2 |
| 37 | 1−55.4iT−1.36e3T2 |
| 41 | 1−6T+1.68e3T2 |
| 43 | 1−62.3T+1.84e3T2 |
| 47 | 1−84iT−2.20e3T2 |
| 53 | 1−17.3iT−2.80e3T2 |
| 59 | 1−62.3T+3.48e3T2 |
| 61 | 1+96.9iT−3.72e3T2 |
| 67 | 1−48.4T+4.48e3T2 |
| 71 | 1−60iT−5.04e3T2 |
| 73 | 1+86T+5.32e3T2 |
| 79 | 1−38iT−6.24e3T2 |
| 83 | 1+13.8T+6.88e3T2 |
| 89 | 1+78T+7.92e3T2 |
| 97 | 1−62T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90224244428363022207449041198, −9.453411902735921273701493323607, −8.859263750765588976718936343055, −8.532101527460893961976831888999, −6.86218345965042272201075070055, −6.24655490795604291462452845787, −5.03844751664607348139678014881, −4.24792991917049444724925928247, −2.69489393388727772336867656866, −1.47183051499872596619843961828,
0.61283480987577486908157251457, 2.27809206313197820495624340122, 3.81276735275334532379363049809, 4.31880862200366076178991506554, 5.96676204210569846680043446906, 6.86905918201796305504872498717, 7.38893709189746923848017209327, 8.606816162038943483748287018081, 9.552019412062116224604496767825, 10.49028524096563118541734104410